6 results on '"van de Molengraft, Rene"'
Search Results
2. SDS++: Online Situation-Aware Drivable Space Estimation for Automated Driving
- Author
-
Sánchez, Manuel Muñoz, Trots, Gijs, Smit, Robin, Oliveira, Pedro Vieira, Silvas, Emilia, Elfring, Jos, and van de Molengraft, René
- Subjects
Computer Science - Robotics - Abstract
Autonomous Vehicles (AVs) need an accurate and up-to-date representation of the environment for safe navigation. Traditional methods, which often rely on detailed environmental representations constructed offline, struggle in dynamically changing environments or when dealing with outdated maps. Consequently, there is a pressing need for real-time solutions that can integrate diverse data sources and adapt to the current situation. An existing framework that addresses these challenges is SDS (situation-aware drivable space). However, SDS faces several limitations, including its use of a non-standard output representation, its choice of encoding objects as points, restricting representation of more complex geometries like road lanes, and the fact that its methodology has been validated only with simulated or heavily post-processed data. This work builds upon SDS and introduces SDS++, designed to overcome SDS's shortcomings while preserving its benefits. SDS++ has been rigorously validated not only in simulations but also with unrefined vehicle data, and it is integrated with a model predictive control (MPC)-based planner to verify its advantages for the planning task. The results demonstrate that SDS++ significantly enhances trajectory planning capabilities, providing increased robustness against localization noise, and enabling the planning of trajectories that adapt to the current driving context.
- Published
- 2024
3. Generation of skill-specific maps from graph world models for robotic systems
- Author
-
de Vos, Koen, Brandt, Gijs van den, Senden, Jordy, Pauwels, Pieter, van de Molengraft, Rene, and Torta, Elena
- Subjects
Computer Science - Robotics - Abstract
With the increase in the availability of Building Information Models (BIM) and (semi-) automatic tools to generate BIM from point clouds, we propose a world model architecture and algorithms to allow the use of the semantic and geometric knowledge encoded within these models to generate maps for robot localization and navigation. When heterogeneous robots are deployed within an environment, maps obtained from classical SLAM approaches might not be shared between all agents within a team of robots, e.g. due to a mismatch in sensor type, or a difference in physical robot dimensions. Our approach extracts the 3D geometry and semantic description of building elements (e.g. material, element type, color) from BIM, and represents this knowledge in a graph. Based on queries on the graph and knowledge of the skills of the robot, we can generate skill-specific maps that can be used during the execution of localization or navigation tasks. The approach is validated with data from complex build environments and integrated into existing navigation frameworks., Comment: 8 pages
- Published
- 2024
4. Prediction Horizon Requirements for Automated Driving: Optimizing Safety, Comfort, and Efficiency
- Author
-
Sánchez, Manuel Muñoz, van der Ploeg, Chris, Smit, Robin, Elfring, Jos, Silvas, Emilia, and van de Molengraft, René
- Subjects
Computer Science - Robotics ,Computer Science - Machine Learning - Abstract
Predicting the movement of other road users is beneficial for improving automated vehicle (AV) performance. However, the relationship between the time horizon associated with these predictions and AV performance remains unclear. Despite the existence of numerous trajectory prediction algorithms, no studies have been conducted on how varying prediction lengths affect AV safety and other vehicle performance metrics, resulting in undefined horizon requirements for prediction methods. Our study addresses this gap by examining the effects of different prediction horizons on AV performance, focusing on safety, comfort, and efficiency. Through multiple experiments using a state-of-the-art, risk-based predictive trajectory planner, we simulated predictions with horizons up to 20 seconds. Based on our simulations, we propose a framework for specifying the minimum required and optimal prediction horizons based on specific AV performance criteria and application needs. Our results indicate that a horizon of 1.6 seconds is required to prevent collisions with crossing pedestrians, horizons of 7-8 seconds yield the best efficiency, and horizons up to 15 seconds improve passenger comfort. We conclude that prediction horizon requirements are application-dependent, and recommend aiming for a prediction horizon of 11.8 seconds as a general guideline for applications involving crossing pedestrians., Comment: Submitted to IEEE Intelligent Vehicles Symposium. 9 pages. 10 figures. 6 tables
- Published
- 2024
5. Robustness Benchmark of Road User Trajectory Prediction Models for Automated Driving
- Author
-
Sánchez, Manuel Muñoz, Silvas, Emilia, Elfring, Jos, and van de Molengraft, René
- Subjects
Computer Science - Artificial Intelligence ,Computer Science - Robotics - Abstract
Accurate and robust trajectory predictions of road users are needed to enable safe automated driving. To do this, machine learning models are often used, which can show erratic behavior when presented with previously unseen inputs. In this work, two environment-aware models (MotionCNN and MultiPath++) and two common baselines (Constant Velocity and an LSTM) are benchmarked for robustness against various perturbations that simulate functional insufficiencies observed during model deployment in a vehicle: unavailability of road information, late detections, and noise. Results show significant performance degradation under the presence of these perturbations, with errors increasing up to +1444.8\% in commonly used trajectory prediction evaluation metrics. Training the models with similar perturbations effectively reduces performance degradation, with error increases of up to +87.5\%. We argue that despite being an effective mitigation strategy, data augmentation through perturbations during training does not guarantee robustness towards unforeseen perturbations, since identification of all possible on-road complications is unfeasible. Furthermore, degrading the inputs sometimes leads to more accurate predictions, suggesting that the models are unable to learn the true relationships between the different elements in the data.
- Published
- 2023
6. Scenario-based Evaluation of Prediction Models for Automated Vehicles
- Author
-
Sánchez, Manuel Muñoz, Elfring, Jos, Silvas, Emilia, and van de Molengraft, René
- Subjects
Computer Science - Artificial Intelligence ,Computer Science - Machine Learning ,Computer Science - Robotics - Abstract
To operate safely, an automated vehicle (AV) must anticipate how the environment around it will evolve. For that purpose, it is important to know which prediction models are most appropriate for every situation. Currently, assessment of prediction models is often performed over a set of trajectories without distinction of the type of movement they capture, resulting in the inability to determine the suitability of each model for different situations. In this work we illustrate how standardized evaluation methods result in wrong conclusions regarding a model's predictive capabilities, preventing a clear assessment of prediction models and potentially leading to dangerous on-road situations. We argue that following evaluation practices in safety assessment for AVs, assessment of prediction models should be performed in a scenario-based fashion. To encourage scenario-based assessment of prediction models and illustrate the dangers of improper assessment, we categorize trajectories of the Waymo Open Motion dataset according to the type of movement they capture. Next, three different models are thoroughly evaluated for different trajectory types and prediction horizons. Results show that common evaluation methods are insufficient and the assessment should be performed depending on the application in which the model will operate., Comment: To be published in IEEE Intelligent Transportation Systems Conference 2022
- Published
- 2022
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.