1. Unsupervised Attention-Based Multi-Source Domain Adaptation Framework for Drift Compensation in Electronic Nose Systems
- Author
-
Zhang, Wenwen, Hu, Shuhao, Zhang, Zhengyuan, Zheng, Yuanjin, Wang, Qi Jie, and Lin, Zhiping
- Subjects
Electrical Engineering and Systems Science - Signal Processing ,Computer Science - Artificial Intelligence - Abstract
Continuous, long-term monitoring of hazardous, noxious, explosive, and flammable gases in industrial environments using electronic nose (E-nose) systems faces the significant challenge of reduced gas identification accuracy due to time-varying drift in gas sensors. To address this issue, we propose a novel unsupervised attention-based multi-source domain shared-private feature fusion adaptation (AMDS-PFFA) framework for gas identification with drift compensation in E-nose systems. The AMDS-PFFA model effectively leverages labeled data from multiple source domains collected during the initial stage to accurately identify gases in unlabeled gas sensor array drift signals from the target domain. To validate the model's effectiveness, extensive experimental evaluations were conducted using both the University of California, Irvine (UCI) standard drift gas dataset, collected over 36 months, and drift signal data from our self-developed E-nose system, spanning 30 months. Compared to recent drift compensation methods, the AMDS-PFFA model achieves the highest average gas recognition accuracy with strong convergence, attaining 83.20% on the UCI dataset and 93.96% on data from our self-developed E-nose system across all target domain batches. These results demonstrate the superior performance of the AMDS-PFFA model in gas identification with drift compensation, significantly outperforming existing methods.
- Published
- 2024