7 results on '"Zhang, Junpei"'
Search Results
2. AIM 2024 Sparse Neural Rendering Challenge: Methods and Results
- Author
-
Nazarczuk, Michal, Catley-Chandar, Sibi, Tanay, Thomas, Shaw, Richard, Pérez-Pellitero, Eduardo, Timofte, Radu, Yan, Xing, Wang, Pan, Guo, Yali, Wu, Yongxin, Cai, Youcheng, Yang, Yanan, Li, Junting, Zhou, Yanghong, Mok, P. Y., He, Zongqi, Xiao, Zhe, Chan, Kin-Chung, Goshu, Hana Lebeta, Yang, Cuixin, Dong, Rongkang, Xiao, Jun, Lam, Kin-Man, Hao, Jiayao, Gao, Qiong, Zu, Yanyan, Zhang, Junpei, Jiao, Licheng, Liu, Xu, and Purohit, Kuldeep
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
This paper reviews the challenge on Sparse Neural Rendering that was part of the Advances in Image Manipulation (AIM) workshop, held in conjunction with ECCV 2024. This manuscript focuses on the competition set-up, the proposed methods and their respective results. The challenge aims at producing novel camera view synthesis of diverse scenes from sparse image observations. It is composed of two tracks, with differing levels of sparsity; 3 views in Track 1 (very sparse) and 9 views in Track 2 (sparse). Participants are asked to optimise objective fidelity to the ground-truth images as measured via the Peak Signal-to-Noise Ratio (PSNR) metric. For both tracks, we use the newly introduced Sparse Rendering (SpaRe) dataset and the popular DTU MVS dataset. In this challenge, 5 teams submitted final results to Track 1 and 4 teams submitted final results to Track 2. The submitted models are varied and push the boundaries of the current state-of-the-art in sparse neural rendering. A detailed description of all models developed in the challenge is provided in this paper., Comment: Part of Advances in Image Manipulation workshop at ECCV 2024
- Published
- 2024
3. LSVOS Challenge Report: Large-scale Complex and Long Video Object Segmentation
- Author
-
Ding, Henghui, Hong, Lingyi, Liu, Chang, Xu, Ning, Yang, Linjie, Fan, Yuchen, Miao, Deshui, Gu, Yameng, Li, Xin, He, Zhenyu, Wang, Yaowei, Yang, Ming-Hsuan, Chai, Jinming, Ma, Qin, Zhang, Junpei, Jiao, Licheng, Liu, Fang, Liu, Xinyu, Zhang, Jing, Zhang, Kexin, Liu, Xu, Li, LingLing, Fang, Hao, Pan, Feiyu, Lu, Xiankai, Zhang, Wei, Cong, Runmin, Tran, Tuyen, Cao, Bin, Zhang, Yisi, Wang, Hanyi, He, Xingjian, and Liu, Jing
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
Despite the promising performance of current video segmentation models on existing benchmarks, these models still struggle with complex scenes. In this paper, we introduce the 6th Large-scale Video Object Segmentation (LSVOS) challenge in conjunction with ECCV 2024 workshop. This year's challenge includes two tasks: Video Object Segmentation (VOS) and Referring Video Object Segmentation (RVOS). In this year, we replace the classic YouTube-VOS and YouTube-RVOS benchmark with latest datasets MOSE, LVOS, and MeViS to assess VOS under more challenging complex environments. This year's challenge attracted 129 registered teams from more than 20 institutes across over 8 countries. This report include the challenge and dataset introduction, and the methods used by top 7 teams in two tracks. More details can be found in our homepage https://lsvos.github.io/., Comment: ECCV 2024 LSVOS Challenge Report: https://lsvos.github.io/
- Published
- 2024
4. CSS-Segment: 2nd Place Report of LSVOS Challenge VOS Track
- Author
-
Chai, Jinming, Ma, Qin, Zhang, Junpei, Jiao, Licheng, and Liu, Fang
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
Video object segmentation is a challenging task that serves as the cornerstone of numerous downstream applications, including video editing and autonomous driving. In this technical report, we briefly introduce the solution of our team "yuanjie" for video object segmentation in the 6-th LSVOS Challenge VOS Track at ECCV 2024. We believe that our proposed CSS-Segment will perform better in videos of complex object motion and long-term presentation. In this report, we successfully validated the effectiveness of the CSS-Segment in video object segmentation. Finally, our method achieved a J\&F score of 80.84 in and test phases, and ultimately ranked 2nd in the 6-th LSVOS Challenge VOS Track at ECCV 2024.
- Published
- 2024
5. Technique Report of CVPR 2024 PBDL Challenges
- Author
-
Fu, Ying, Li, Yu, You, Shaodi, Shi, Boxin, Chen, Linwei, Zou, Yunhao, Wang, Zichun, Li, Yichen, Han, Yuze, Zhang, Yingkai, Wang, Jianan, Liu, Qinglin, Yu, Wei, Lv, Xiaoqian, Li, Jianing, Zhang, Shengping, Ji, Xiangyang, Chen, Yuanpei, Zhang, Yuhan, Peng, Weihang, Zhang, Liwen, Xu, Zhe, Gou, Dingyong, Li, Cong, Xu, Senyan, Zhang, Yunkang, Jiang, Siyuan, Lu, Xiaoqiang, Jiao, Licheng, Liu, Fang, Liu, Xu, Li, Lingling, Ma, Wenping, Yang, Shuyuan, Xie, Haiyang, Zhao, Jian, Huang, Shihua, Cheng, Peng, Shen, Xi, Wang, Zheng, An, Shuai, Zhu, Caizhi, Li, Xuelong, Zhang, Tao, Li, Liang, Liu, Yu, Yan, Chenggang, Zhang, Gengchen, Jiang, Linyan, Song, Bingyi, An, Zhuoyu, Lei, Haibo, Luo, Qing, Song, Jie, Liu, Yuan, Li, Qihang, Zhang, Haoyuan, Wang, Lingfeng, Chen, Wei, Luo, Aling, Li, Cheng, Cao, Jun, Chen, Shu, Dou, Zifei, Liu, Xinyu, Zhang, Jing, Zhang, Kexin, Yang, Yuting, Gou, Xuejian, Wang, Qinliang, Liu, Yang, Zhao, Shizhan, Zhang, Yanzhao, Yan, Libo, Guo, Yuwei, Li, Guoxin, Gao, Qiong, Che, Chenyue, Sun, Long, Chen, Xiang, Li, Hao, Pan, Jinshan, Xie, Chuanlong, Chen, Hongming, Li, Mingrui, Deng, Tianchen, Huang, Jingwei, Li, Yufeng, Wan, Fei, Xu, Bingxin, Cheng, Jian, Liu, Hongzhe, Xu, Cheng, Zou, Yuxiang, Pan, Weiguo, Dai, Songyin, Jia, Sen, Zhang, Junpei, and Chen, Puhua
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
The intersection of physics-based vision and deep learning presents an exciting frontier for advancing computer vision technologies. By leveraging the principles of physics to inform and enhance deep learning models, we can develop more robust and accurate vision systems. Physics-based vision aims to invert the processes to recover scene properties such as shape, reflectance, light distribution, and medium properties from images. In recent years, deep learning has shown promising improvements for various vision tasks, and when combined with physics-based vision, these approaches can enhance the robustness and accuracy of vision systems. This technical report summarizes the outcomes of the Physics-Based Vision Meets Deep Learning (PBDL) 2024 challenge, held in CVPR 2024 workshop. The challenge consisted of eight tracks, focusing on Low-Light Enhancement and Detection as well as High Dynamic Range (HDR) Imaging. This report details the objectives, methodologies, and results of each track, highlighting the top-performing solutions and their innovative approaches., Comment: CVPR 2024 PBDL Challenges: https://pbdl-ws.github.io/pbdl2024/challenge/index.html
- Published
- 2024
6. The Robust Semantic Segmentation UNCV2023 Challenge Results
- Author
-
Yu, Xuanlong, Zuo, Yi, Wang, Zitao, Zhang, Xiaowen, Zhao, Jiaxuan, Yang, Yuting, Jiao, Licheng, Peng, Rui, Wang, Xinyi, Zhang, Junpei, Zhang, Kexin, Liu, Fang, Alcover-Couso, Roberto, SanMiguel, Juan C., Escudero-Viñolo, Marcos, Tian, Hanlin, Matsui, Kenta, Wang, Tianhao, Adan, Fahmy, Gao, Zhitong, He, Xuming, Bouniot, Quentin, Moghaddam, Hossein, Rai, Shyam Nandan, Cermelli, Fabio, Masone, Carlo, Pilzer, Andrea, Ricci, Elisa, Bursuc, Andrei, Solin, Arno, Trapp, Martin, Li, Rui, Yao, Angela, Chen, Wenlong, Simpson, Ivor, Campbell, Neill D. F., and Franchi, Gianni
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Machine Learning - Abstract
This paper outlines the winning solutions employed in addressing the MUAD uncertainty quantification challenge held at ICCV 2023. The challenge was centered around semantic segmentation in urban environments, with a particular focus on natural adversarial scenarios. The report presents the results of 19 submitted entries, with numerous techniques drawing inspiration from cutting-edge uncertainty quantification methodologies presented at prominent conferences in the fields of computer vision and machine learning and journals over the past few years. Within this document, the challenge is introduced, shedding light on its purpose and objectives, which primarily revolved around enhancing the robustness of semantic segmentation in urban scenes under varying natural adversarial conditions. The report then delves into the top-performing solutions. Moreover, the document aims to provide a comprehensive overview of the diverse solutions deployed by all participants. By doing so, it seeks to offer readers a deeper insight into the array of strategies that can be leveraged to effectively handle the inherent uncertainties associated with autonomous driving and semantic segmentation, especially within urban environments., Comment: 11 pages, 4 figures, accepted at ICCV 2023 UNCV workshop
- Published
- 2023
7. SoccerNet 2023 Challenges Results
- Author
-
Cioppa, Anthony, Giancola, Silvio, Somers, Vladimir, Magera, Floriane, Zhou, Xin, Mkhallati, Hassan, Deliège, Adrien, Held, Jan, Hinojosa, Carlos, Mansourian, Amir M., Miralles, Pierre, Barnich, Olivier, De Vleeschouwer, Christophe, Alahi, Alexandre, Ghanem, Bernard, Van Droogenbroeck, Marc, Kamal, Abdullah, Maglo, Adrien, Clapés, Albert, Abdelaziz, Amr, Xarles, Artur, Orcesi, Astrid, Scott, Atom, Liu, Bin, Lim, Byoungkwon, Chen, Chen, Deuser, Fabian, Yan, Feng, Yu, Fufu, Shitrit, Gal, Wang, Guanshuo, Choi, Gyusik, Kim, Hankyul, Guo, Hao, Fahrudin, Hasby, Koguchi, Hidenari, Ardö, Håkan, Salah, Ibrahim, Yerushalmy, Ido, Muhammad, Iftikar, Uchida, Ikuma, Be'ery, Ishay, Rabarisoa, Jaonary, Lee, Jeongae, Fu, Jiajun, Yin, Jianqin, Xu, Jinghang, Nang, Jongho, Denize, Julien, Li, Junjie, Zhang, Junpei, Kim, Juntae, Synowiec, Kamil, Kobayashi, Kenji, Zhang, Kexin, Habel, Konrad, Nakajima, Kota, Jiao, Licheng, Ma, Lin, Wang, Lizhi, Wang, Luping, Li, Menglong, Zhou, Mengying, Nasr, Mohamed, Abdelwahed, Mohamed, Liashuha, Mykola, Falaleev, Nikolay, Oswald, Norbert, Jia, Qiong, Pham, Quoc-Cuong, Song, Ran, Hérault, Romain, Peng, Rui, Chen, Ruilong, Liu, Ruixuan, Baikulov, Ruslan, Fukushima, Ryuto, Escalera, Sergio, Lee, Seungcheon, Chen, Shimin, Ding, Shouhong, Someya, Taiga, Moeslund, Thomas B., Li, Tianjiao, Shen, Wei, Zhang, Wei, Li, Wei, Dai, Wei, Luo, Weixin, Zhao, Wending, Zhang, Wenjie, Yang, Xinquan, Ma, Yanbiao, Joo, Yeeun, Zeng, Yingsen, Gan, Yiyang, Zhu, Yongqiang, Zhong, Yujie, Ruan, Zheng, Li, Zhiheng, Huang, Zhijian, and Meng, Ziyu
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Artificial Intelligence - Abstract
The SoccerNet 2023 challenges were the third annual video understanding challenges organized by the SoccerNet team. For this third edition, the challenges were composed of seven vision-based tasks split into three main themes. The first theme, broadcast video understanding, is composed of three high-level tasks related to describing events occurring in the video broadcasts: (1) action spotting, focusing on retrieving all timestamps related to global actions in soccer, (2) ball action spotting, focusing on retrieving all timestamps related to the soccer ball change of state, and (3) dense video captioning, focusing on describing the broadcast with natural language and anchored timestamps. The second theme, field understanding, relates to the single task of (4) camera calibration, focusing on retrieving the intrinsic and extrinsic camera parameters from images. The third and last theme, player understanding, is composed of three low-level tasks related to extracting information about the players: (5) re-identification, focusing on retrieving the same players across multiple views, (6) multiple object tracking, focusing on tracking players and the ball through unedited video streams, and (7) jersey number recognition, focusing on recognizing the jersey number of players from tracklets. Compared to the previous editions of the SoccerNet challenges, tasks (2-3-7) are novel, including new annotations and data, task (4) was enhanced with more data and annotations, and task (6) now focuses on end-to-end approaches. More information on the tasks, challenges, and leaderboards are available on https://www.soccer-net.org. Baselines and development kits can be found on https://github.com/SoccerNet.
- Published
- 2023
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.