1. The Key Steps and Distinct Performance Trends of Pyrrolic vs. Pyridinic M-N-C Catalysts in Electrocatalytic Nitrate Reduction
- Author
-
Jiang, Qiuling, Gu, Mingyao, Wang, Tianyi, Liu, Fangzhou, Yang, Xin, Zhang, Di, Wu, Zhijian, Wang, Ying, Wei, Li, and Li, Hao
- Subjects
Physics - Chemical Physics ,Condensed Matter - Materials Science - Abstract
Electrochemical nitrate reduction reaction(NO3RR)offers a sustainable route for ambient ammonia synthesis. While metal-nitrogen-carbon (M-N-C) single-atom catalysts have emerged as promising candidates for NO3RR, the structure-activity relations underlying their catalytic behavior remain to be elucidated. Through systematic analysis of reported experimental data and pH-field coupled microkinetic modelling on a reversible hydrogen electrode (RHE) scale, we reveal that the coordination-dependent activity originates from distinct scaling relations governed by metal-intermediate interactions. M-N-Pyrrolic catalysts demonstrate higher turnover frequencies for ammonia production, whereas M-N-Pyridinic catalysts exhibit broader activity ranges across the activity volcano plot. Meanwhile, the adsorption and protonation of nitrate, which is a step often dismissed and/or assumed to be simultaneous in many previous reports, is identified to be the rate-determining step (RDS) in NO3RR. Remarkably, our subsequent experimental validation confirms the theoretical predictions under both neutral and alkaline conditions. This study offers a comprehensive mechanistic framework for interpreting the electrocatalytic activity of M-N-C catalysts in NO3RR, showing that a classical thermodynamic limiting-potential model is not sufficiently accurate to capture the RDS and the catalytic performance trends of different materials (even on M-N-Pyrrolic and M-N-Pyridinic catalysts). These findings provide brand new insights into the reaction mechanism of NO3RR and establish fundamental design principles for electrocatalytic ammonia synthesis., Comment: 21 pages
- Published
- 2024