1. Calculation of the Relaxation Modulus in the Andrade Model by Using the Laplace Transform
- Author
-
González-Santander, Juan Luis, Spada, Giorgio, Mainardi, Francesco, and Apelblat, Alexander
- Subjects
Physics - Classical Physics ,Mathematical Physics ,33E12, 44A10, 45D05 - Abstract
In the framework of the theory of linear viscoelasticity, we derive an analytical expression of the relaxation modulus in the Andrade model $G_{\alpha }\left( t\right) $ for the case of rational parameter \mbox{$\alpha =m/n\in (0,1)$} in terms of Mittag--Leffler functions from its Laplace transform $\tilde{G}_{\alpha }\left( s\right) $. It turns out that the expression obtained can be rewritten in terms of Rabotnov functions. Moreover, for the original parameter $\alpha =1/3$ in the Andrade model, we obtain an expression in terms of Miller-Ross functions. The asymptotic behaviours of $G_{\alpha }\left( t\right) $ for $t\rightarrow 0^{+}$ and $t\rightarrow +\infty $ are also derived applying the Tauberian theorem. The analytical results obtained have been numerically checked by solving the Volterra integral equation satisfied by $G_{\alpha }\left( t\right) $ by using a successive approximation approach, as well as computing the inverse Laplace transform of $\tilde{G}_{\alpha }\left( s\right) $ by using Talbot's method.
- Published
- 2024
- Full Text
- View/download PDF