1. On High Explosive Launching of Projectiles for Shock Physics Experiments
- Author
-
Swift, Damian C., Forest, Charles A., Clark, David A., Buttler, William T., Marr-Lyon, Mark, and Rightley, Paul
- Subjects
Condensed Matter - Materials Science ,Condensed Matter - Other Condensed Matter - Abstract
The hydrodynamic operation of the `Forest Flyer' type of explosive launching system for shock physics projectiles was investigated in detail using one- and two-dimensional continuum dynamics simulations. The simulations were insensitive to uncertainties in the material properties, and reproduced measurements of the projectile. The most commonly-used variant, with an Al alloy case, was predicted to produce a slightly curved projectile, subjected to some shock heating, and likely exhibiting some porosity from tensile damage. The flatness can be improved by using a case of lower shock impedance, such as polymethyl methacrylate. High-impedance cases, including Al alloys but with denser materials improving the launching efficiency, can be used if designed according to the physics of oblique shock reflection. The tensile stress induced in the projectile depends on the relative thickness of the explosive, expansion gap, and projectile. The thinner the projectile with respect to the explosive, the smaller the tensile stress. If the explosive is initiated with a plane wave lens, the tensile stress is lower than for initiation with multiple detonators over a plane. The previous plane wave lens designs did however induce a tensile stress close to the spall strength of the projectile. The tensile stress can be reduced by changes in the component thicknesses. Experiments to verify the operation of explosively-launched projectiles should attempt to measure porosity induced in the projectile: arrival time measurements may be insensitive to porous regions caused by damaged or recollected material.
- Published
- 2007
- Full Text
- View/download PDF