1. Modelling of physical systems with a Hopf bifurcation using mechanistic models and machine learning
- Author
-
Lee, K. H., Barton, D. A. W., and Renson, L.
- Subjects
Mathematics - Dynamical Systems ,Computer Science - Machine Learning ,Nonlinear Sciences - Chaotic Dynamics - Abstract
We propose a new hybrid modelling approach that combines a mechanistic model with a machine-learnt model to predict the limit cycle oscillations of physical systems with a Hopf bifurcation. The mechanistic model is an ordinary differential equation normal-form model capturing the bifurcation structure of the system. A data-driven mapping from this model to the experimental observations is then identified based on experimental data using machine learning techniques. The proposed method is first demonstrated numerically on a Van der Pol oscillator and a three-degree-of-freedom aeroelastic model. It is then applied to model the behaviour of a physical aeroelastic structure exhibiting limit cycle oscillations during wind tunnel tests. The method is shown to be general, data-efficient and to offer good accuracy without any prior knowledge about the system other than its bifurcation structure.
- Published
- 2022
- Full Text
- View/download PDF