1. Qudit inspired optimization for graph coloring
- Author
-
Jansen, David, Heightman, Timothy, Mortimer, Luke, Perito, Ignacio, and Acín, Antonio
- Subjects
Quantum Physics - Abstract
We introduce a quantum-inspired algorithm for Graph Coloring Problems (GCPs) that utilizes qudits in a product state, with each qudit representing a node in the graph and parameterized by d-dimensional spherical coordinates. We propose and benchmark two optimization strategies: qudit gradient descent (QdGD), initiating qudits in random states and employing gradient descent to minimize a cost function, and qudit local quantum annealing (QdLQA), which adapts the local quantum annealing method to optimize an adiabatic transition from a tractable initial function to a problem-specific cost function. Our approaches are benchmarked against established solutions for standard GCPs, showing that our methods not only rival but frequently surpass the performance of recent state-of-the-art algorithms in terms of solution quality and computational efficiency. The adaptability of our algorithm and its high-quality solutions, achieved with minimal computational resources, point to an advancement in the field of quantum-inspired optimization, with potential applications extending to a broad spectrum of optimization problems., Comment: 10 pages, 5 figures
- Published
- 2024