1. On Decompositions of H-holomorphic functions into quaternionic power series
- Author
-
Parfenov, Michael
- Subjects
Mathematics - Complex Variables ,30G35 - Abstract
Based on the full similarity in algebraic properties and differentiation rules between quaternionic (H-) holomorphic and complex (C-) holomorphic functions, we assume that there exists one holistic notion of a holomorphic function that has a H-representation in the case of quaternions and a C-representation in the case of complex variables. We get the essential definitions and criteria for a quaternionic power series convergence, adapting complex analogues to the quaternion case. It is established that the power series expansions of any holomorphic function in C- and H-representations are similar and converge with identical convergence radiuses. We define a H-analytic function and prove that every H-holomorphic function is H-analytic. Some examples of power series expansions are given., Comment: 22 pages
- Published
- 2024