1. multiGradICON: A Foundation Model for Multimodal Medical Image Registration
- Author
-
Demir, Basar, Tian, Lin, Greer, Thomas Hastings, Kwitt, Roland, Vialard, Francois-Xavier, Estepar, Raul San Jose, Bouix, Sylvain, Rushmore, Richard Jarrett, Ebrahim, Ebrahim, and Niethammer, Marc
- Subjects
Electrical Engineering and Systems Science - Image and Video Processing ,Computer Science - Computer Vision and Pattern Recognition - Abstract
Modern medical image registration approaches predict deformations using deep networks. These approaches achieve state-of-the-art (SOTA) registration accuracy and are generally fast. However, deep learning (DL) approaches are, in contrast to conventional non-deep-learning-based approaches, anatomy-specific. Recently, a universal deep registration approach, uniGradICON, has been proposed. However, uniGradICON focuses on monomodal image registration. In this work, we therefore develop multiGradICON as a first step towards universal *multimodal* medical image registration. Specifically, we show that 1) we can train a DL registration model that is suitable for monomodal *and* multimodal registration; 2) loss function randomization can increase multimodal registration accuracy; and 3) training a model with multimodal data helps multimodal generalization. Our code and the multiGradICON model are available at https://github.com/uncbiag/uniGradICON.
- Published
- 2024