1. MMCS: A Multimodal Medical Diagnosis System Integrating Image Analysis and Knowledge-based Departmental Consultation
- Author
-
Ren, Yi, Zhang, HanZhi, Li, Weibin, Liu, Diandong, Zhang, Tianyi, and He, Jie
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Artificial Intelligence - Abstract
We present MMCS, a system capable of recognizing medical images and patient facial details, and providing professional medical diagnoses. The system consists of two core components: The first component is the analysis of medical images and videos. We trained a specialized multimodal medical model capable of interpreting medical images and accurately analyzing patients' facial emotions and facial paralysis conditions. The model achieved an accuracy of 72.59% on the FER2013 facial emotion recognition dataset, with a 91.1% accuracy in recognizing the happy emotion. In facial paralysis recognition, the model reached an accuracy of 92%, which is 30% higher than that of GPT-4o. Based on this model, we developed a parser for analyzing facial movement videos of patients with facial paralysis, achieving precise grading of the paralysis severity. In tests on 30 videos of facial paralysis patients, the system demonstrated a grading accuracy of 83.3%.The second component is the generation of professional medical responses. We employed a large language model, integrated with a medical knowledge base, to generate professional diagnoses based on the analysis of medical images or videos. The core innovation lies in our development of a department-specific knowledge base routing management mechanism, in which the large language model categorizes data by medical departments and, during the retrieval process, determines the appropriate knowledge base to query. This significantly improves retrieval accuracy in the RAG (retrieval-augmented generation) process. This mechanism led to an average increase of 4 percentage points in accuracy for various large language models on the MedQA dataset.Our code is open-sourced and available at: https://github.com/renllll/MMCS.
- Published
- 2024