279 results on '"Lee B"'
Search Results
2. Centrality dependence of L\'evy-stable two-pion Bose-Einstein correlations in $\sqrt{s_{_{NN}}}=200$ GeV Au$+$Au collisions
- Author
-
PHENIX Collaboration, Abdulameer, N. J., Acharya, U., Adare, A., Aidala, C., Ajitanand, N. N., Akiba, Y., Akimoto, R., Al-Ta'ani, H., Alexander, J., Angerami, A., Aoki, K., Apadula, N., Aramaki, Y., Asano, H., Aschenauer, E. C., Atomssa, E. T., Awes, T. C., Azmoun, B., Babintsev, V., Bai, M., Bannier, B., Barish, K. N., Bassalleck, B., Bathe, S., Baublis, V., Baumgart, S., Bazilevsky, A., Belmont, R., Berdnikov, A., Berdnikov, Y., Bichon, L., Blankenship, B., Blau, D. S., Bok, J. S., Borisov, V., Boyle, K., Brooks, M. L., Buesching, H., Bumazhnov, V., Butsyk, S., Campbell, S., Castera, P., Chen, C. -H., Chen, D., Chiu, M., Chi, C. Y., Choi, I. J., Choi, J. B., Choi, S., Choudhury, R. K., Christiansen, P., Chujo, T., Chvala, O., Cianciolo, V., Citron, Z., Cole, B. A., Connors, M., Corliss, R., Csanád, M., Csörgő, T., D'Orazio, L., Dairaku, S., Datta, A., Daugherity, M. S., David, G., Denisov, A., Deshpande, A., Desmond, E. J., Dharmawardane, K. V., Dietzsch, O., Ding, L., Dion, A., Donadelli, M., Doomra, V., Drapier, O., Drees, A., Drees, K. A., Durham, J. M., Durum, A., Edwards, S., Efremenko, Y. V., Engelmore, T., Enokizono, A., Esha, R., Eyser, K. O., Fadem, B., Fields, D. E., Finger, Jr., M., Finger, M., Firak, D., Fitzgerald, D., Fleuret, F., Fokin, S. L., Frantz, J. E., Franz, A., Frawley, A. D., Fukao, Y., Fusayasu, T., Gainey, K., Gal, C., Garishvili, A., Garishvili, I., Glenn, A., Gong, X., Gonin, M., Goto, Y., de Cassagnac, R. Granier, Grau, N., Greene, S. V., Perdekamp, M. Grosse, Gunji, T., Guo, L., Guo, T., Gustafsson, H. -Å., Hachiya, T., Haggerty, J. S., Hahn, K. I., Hamagaki, H., Hanks, J., Hashimoto, K., Haslum, E., Hayano, R., Hemmick, T. K., Hester, T., He, X., Hill, J. C., Hodges, A., Hollis, R. S., Homma, K., Hong, B., Horaguchi, T., Hori, Y., Ichihara, T., Iinuma, H., Ikeda, Y., Imrek, J., Inaba, M., Iordanova, A., Isenhower, D., Issah, M., Ivanishchev, D., Jacak, B. V., Javani, M., Jiang, X., Ji, Z., Johnson, B. M., Joo, K. S., Jouan, D., Jumper, D. S., Kamin, J., Kaneti, S., Kang, B. H., Kang, J. H., Kang, J. S., Kapustinsky, J., Karatsu, K., Kasai, M., Kasza, G., Kawall, D., Kazantsev, A. V., Kempel, T., Khanzadeev, A., Kijima, K. M., Kim, B. I., Kim, C., Kim, D. J., Kim, E. -J., Kim, H. J., Kim, K. -B., Kim, Y. -J., Kim, Y. K., Kinney, E., Kiss, Á., Kistenev, E., Klatsky, J., Kleinjan, D., Kline, P., Komatsu, Y., Komkov, B., Koster, J., Kotchetkov, D., Kotov, D., Kovacs, L., Krizek, F., Král, A., Kunde, G. J., Kurgyis, B., Kurita, K., Kurosawa, M., Kwon, Y., Kyle, G. S., Lai, Y. S., Lajoie, J. G., Lebedev, A., Lee, B., Lee, D. M., Lee, J., Lee, K. B., Lee, K. S., Lee, S. H., Lee, S. R., Leitch, M. J., Leite, M. A. L., Leitgab, M., Lewis, B., Lim, S. H., Levy, L. A. Linden, Liu, M. X., Lökös, S., Loomis, D. A., Love, B., Maguire, C. F., Makdisi, Y. I., Makek, M., Manion, A., Manko, V. I., Mannel, E., Masumoto, S., McCumber, M., McGaughey, P. L., McGlinchey, D., McKinney, C., Mendoza, M., Meredith, B., Miake, Y., Mibe, T., Mignerey, A. C., Milov, A., Mishra, D. K., Mitchell, J. T., Mitrankova, M., Mitrankov, Iu., Miyachi, Y., Miyasaka, S., Mohanty, A. K., Mohapatra, S., Moon, H. J., Morrison, D. P., Motschwiller, S., Moukhanova, T. V., Mulilo, B., Murakami, T., Murata, J., Mwai, A., Nagae, T., Nagamiya, S., Nagle, J. L., Nagy, M. I., Nakagawa, I., Nakamiya, Y., Nakamura, K. R., Nakamura, T., Nakano, K., Nattrass, C., Nederlof, A., Nihashi, M., Nouicer, R., Novák, T., Novitzky, N., Nukazuka, G., Nyanin, A. S., O'Brien, E., Ogilvie, C. A., Okada, K., Orosz, M., Oskarsson, A., Ouchida, M., Ozawa, K., Pak, R., Pantuev, V., Papavassiliou, V., Park, B. H., Park, I. H., Park, J. S., Park, S., Park, S. K., Patel, L., Pate, S. F., Pei, H., Peng, J. -C., Pereira, H., Peressounko, D. Yu., Petti, R., Pinkenburg, C., Pisani, R. P., Potekhin, M., Proissl, M., Purschke, M. L., Qu, H., Rak, J., Ravinovich, I., Read, K. F., Reynolds, D., Riabov, V., Riabov, Y., Richardson, E., Richford, D., Roach, D., Roche, G., Rolnick, S. D., Rosati, M., Sahlmueller, B., Saito, N., Sakaguchi, T., Samsonov, V., Sano, M., Sarsour, M., Sawada, S., Sedgwick, K., Seidl, R., Sen, A., Seto, R., Sharma, D., Shein, I., Shibata, T. -A., Shigaki, K., Shimomura, M., Shoji, K., Shukla, P., Sickles, A., Silva, C. L., Silvermyr, D., Sim, K. S., Singh, B. K., Singh, C. P., Singh, V., Slunečka, M., Smith, K. L., Soltz, R. A., Sondheim, W. E., Sorensen, S. P., Sourikova, I. V., Stankus, P. W., Stenlund, E., Stepanov, M., Ster, A., Stoll, S. P., Sugitate, T., Sukhanov, A., Sun, J., Sun, Z., Sziklai, J., Takagui, E. M., Takahara, A., Taketani, A., Tanaka, Y., Taneja, S., Tanida, K., Tannenbaum, M. J., Tarafdar, S., Taranenko, A., Tennant, E., Themann, H., Todoroki, T., Tomášek, L., Tomášek, M., Torii, H., Towell, R. S., Tserruya, I., Tsuchimoto, Y., Tsuji, T., Ujvari, B., Vale, C., van Hecke, H. W., Vargyas, M., Vazquez-Zambrano, E., Veicht, A., Velkovska, J., Virius, M., Vossen, A., Vrba, V., Vznuzdaev, E., Vértesi, R., Wang, X. R., Watanabe, D., Watanabe, K., Watanabe, Y., Watanabe, Y. S., Wei, F., Wei, R., White, S. N., Winter, D., Wolin, S., Woody, C. L., Wysocki, M., Xia, B., Yamaguchi, Y. L., Yang, R., Yanovich, A., Ying, J., Yokkaichi, S., Younus, I., You, Z., Yushmanov, I. E., Zajc, W. A., and Zelenski, A.
- Subjects
Nuclear Experiment - Abstract
The PHENIX experiment measured the centrality dependence of two-pion Bose-Einstein correlation functions in $\sqrt{s_{_{NN}}}=200$~GeV Au$+$Au collisions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. The data are well represented by L\'evy-stable source distributions. The extracted source parameters are the correlation-strength parameter $\lambda$, the L\'evy index of stability $\alpha$, and the L\'evy-scale parameter $R$ as a function of transverse mass $m_T$ and centrality. The $\lambda(m_T)$ parameter is constant at larger values of $m_T$, but decreases as $m_T$ decreases. The L\'evy scale parameter $R(m_T)$ decreases with $m_T$ and exhibits proportionality to the length scale of the nuclear overlap region. The L\'evy exponent $\alpha(m_T)$ is independent of $m_T$ within uncertainties in each investigated centrality bin, but shows a clear centrality dependence. At all centralities, the L\'evy exponent $\alpha$ is significantly different from that of Gaussian ($\alpha=2$) or Cauchy ($\alpha=1$) source distributions. Comparisons to the predictions of Monte-Carlo simulations of resonance-decay chains show that in all but the most peripheral centrality class (50%-60%), the obtained results are inconsistent with the measurements, unless a significant reduction of the in-medium mass of the $\eta'$ meson is included. In each centrality class, the best value of the in-medium $\eta'$ mass is compared to the mass of the $\eta$ meson, as well as to several theoretical predictions that consider restoration of $U_A(1)$ symmetry in hot hadronic matter., Comment: 401 authors from 75 institutions, 20 pages, 15 figures, 2 tables. v1 is version submitted to Physical Review C. HEPdata tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.html
- Published
- 2024
3. Direct optimization of neoclassical ion transport in stellarator reactors
- Author
-
Lee, B. F., Lazerson, S. A., Smith, H. M., Beidler, C. D., and Pablant, N. A.
- Subjects
Physics - Plasma Physics - Abstract
We directly optimize stellarator neoclassical ion transport while holding neoclassical electron transport at a moderate level, creating a scenario favorable for impurity expulsion and retaining good ion confinement. Traditional neoclassical stellarator optimization has focused on minimizing $\epsilon_\mathrm{eff}$, the geometric factor that characterizes the amount of radial transport due to particles in the $1/\nu$ regime. Under expected reactor-relevant conditions, core electrons will be in the $1/\nu$ regime and core fuel ions will be in the $\sqrt{\nu}$ regime. Traditional optimizations thus minimize electron transport and rely on the radial electric field $\left(E_r\right)$ that develops to confine the ions. This often results in an inward-pointing $E_r$ that drives high-$Z$ impurities into the core, which may be troublesome in future reactors. In this work, we increase the ratio of the thermal transport coefficients $L_{1 1}^{e}/L_{1 1}^{i}$, which previous research has shown can create an outward-pointing $E_r$. This effect is very beneficial for impurity expulsion. We obtain self-consistent density, temperature, and $E_r$ profiles at reactor-relevant conditions for an optimized equilibrium. This equilibrium is expected to enjoy significantly improved impurity transport properties., Comment: Reviewers requested focusing on a single optimized configuration rather than three
- Published
- 2024
- Full Text
- View/download PDF
4. Production of antihydrogen atoms by 6 keV antiprotons through a positronium cloud
- Author
-
Adrich, P., Blumer, P., Caratsch, G., Chung, M., Cladé, P., Comini, P., Crivelli, P., Dalkarov, O., Debu, P., Douillet, A., Drapier, D., Froelich, P., Garroum, N., Guellati-Khelifa, S., Guyomard, J., Hervieux, P-A., Hilico, L., Indelicato, P., Jonsell, S., Karr, J-P., Kim, B., Kim, S., Kim, E-S., Ko, Y. J., Kosinski, T., Kuroda, N., Latacz, B. M., Lee, B., Lee, H., Lee, J., Lim, E., Liszkay, L., Lunney, D., Manfredi, G., Mansoulié, B., Matusiak, M., Nesvizhevsky, V., Nez, F., Niang, S., Ohayon, B., Park, K., Paul, N., Pérez, P., Regenfus, C., Reynaud, S., Roumegou, C., Roussé, J-Y., Sacquin, Y., Sadowski, G., Sarkisyan, J., Sato, M., Schmidt-Kaler, F., Staszczak, M., Szymczyk, K., Tanaka, T. A., Tuchming, B., Vallage, B., Voronin, A., van der Werf, D. P., Won, D., Wronka, S., Yamazaki, Y., Yoo, K-H., and Yzombard, P.
- Subjects
High Energy Physics - Experiment ,Physics - Instrumentation and Detectors - Abstract
We report on the first production of an antihydrogen beam by charge exchange of 6.1 keV antiprotons with a cloud of positronium in the GBAR experiment at CERN. The antiproton beam was delivered by the AD/ELENA facility. The positronium target was produced from a positron beam itself obtained from an electron linear accelerator. We observe an excess over background indicating antihydrogen production with a significance of 3-4 standard deviations.
- Published
- 2023
- Full Text
- View/download PDF
5. VERTICO III: The Kennicutt-Schmidt relation in Virgo cluster galaxies
- Author
-
Jiménez-Donaire, M. J., Brown, T., Wilson, C. D., Roberts, I. D., Zabel, N., Ellison, S. L., Thorp, M., Villanueva, V., Chown, R., Bisaria, D., Bolatto, A. D., Boselli, A., Catinella, B., Chung, A., Cortese, L., Davis, T. A., Lagos, C. D. P., Lee, B., Parker, L. C., Spekkens, K., Stevens, A. R. H., and Sun, J.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
In this VERTICO science paper we aim to study how the star formation process depends on galactic environment and gravitational interactions in the context of galaxy evolution. We explore the scaling relation between the star formation rate (SFR) surface density and the molecular gas surface density, also known as the Kennicutt-Schmidt (KS) relation, in a subsample of Virgo cluster spiral galaxies. We use new ACA and TP observations from the VERTICO-ALMA Large Program at 720pc resolution to resolve the molecular gas content, as traced by the 12CO(2-1) transition, across the disks of 37 spiral galaxies in the Virgo cluster. In combination with archival observations, we estimate the parameters of the KS relation for the entire ensemble of galaxies, and within individual galaxies. We find the KS slope for the entire population to be N=0.97+/-0.07, with a characteristic molecular gas depletion time of 1.86Gyr for our full sample, in agreement with previous work in isolated star-forming galaxies. In individual galaxies, we find KS slopes ranging between 0.69 and 1.40, and typical star formation efficiencies (SFE) that can vary from galaxy to galaxy by a factor of ~4. These galaxy-to-galaxy variations account for ~0.20dex in scatter in the ensemble KS relation, which is characterized by a 0.42dex scatter. We find that the HI-deficient galaxies in the Virgo cluster show a steeper resolved KS relation and lower molecular gas efficiencies than HI-normal cluster galaxies. While the molecular gas content in Virgo cluster galaxies appears to behave similarly to that in isolated galaxies, our VERTICO sample shows that cluster environments play a key role in regulating star formation. The environmental mechanisms affecting the HI galaxy content also have a direct impact in the SFE of molecular gas in cluster galaxies, leading to longer depletion times in HI-deficient members., Comment: Accepted for publication in Astronomy & Astrophysics
- Published
- 2022
- Full Text
- View/download PDF
6. Positron accumulation in the GBAR experiment
- Author
-
Blumer, P., Charlton, M., Chung, M., Clade, P., Comini, P., Crivelli, P., Dalkarov, O., Debu, P., Dodd, L., Douillet, A., Guellati, S., Hervieux, P. -A, Hilico, L., Indelicato, P., Janka, G., Jonsell, S., Karr, J. -P., Kim, B. H., Kim, E. S., Kim, S. K., Ko, Y., Kosinski, T., Kuroda, N., Latacz, B. M., Lee, B., Lee, H., Lee, J., Leitee, A. M. M., Leveque, K., Lim, E., Liszkay, L., Lotrus, P., Lunney, D., Manfredi, G., Mansoulie, B., Matusiak, M., Mornacchi, G., Nesvizhevsky, V., Nez, F., Niang, S., Nishi, R., Ohayon, B., Park, K., Paul, N., Perez, P., Procureur, S., Radics, B., Regenfus, C., Reymond, J. -M., Reynaud, S., Rousse, J. -Y., Rousselle, O., Rubbia, A., Rzadkiewicl, J., Sacquin, Y., Schmidt-Kaler, F., Staszczak, M., Szymczyk, K., Tanaka, T., Tuchming, B., Vallage, B., Voronin, A., van der Werf, D. P., Wolf, S., Won, D., Wronka, S., Yamazaki, Y., Yoo, K. H., Yzombard, P., and Baker, C. J.
- Subjects
Physics - Plasma Physics - Abstract
We present a description of the GBAR positron (e+) trapping apparatus, which consists of a three stage Buffer Gas Trap (BGT) followed by a High Field Penning Trap (HFT), and discuss its performance. The overall goal of the GBAR experiment is to measure the acceleration of the neutral antihydrogen (H) atom in the terrestrial gravitational field by neutralising a positive antihydrogen ion (H+), which has been cooled to a low temperature, and observing the subsequent H annihilation following free fall. To produce one H+ ion, about 10^10 positrons, efficiently converted into positronium (Ps), together with about 10^7 antiprotons (p), are required. The positrons, produced from an electron linac-based system, are accumulated first in the BGT whereafter they are stacked in the ultra-high vacuum HFT, where we have been able to trap 1.4(2) x 10^9 positrons in 1100 seconds.
- Published
- 2022
- Full Text
- View/download PDF
7. Low-$p_T$ direct-photon production in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=39$ and 62.4 GeV
- Author
-
Abdulameer, N. J., Acharya, U., Adare, A., Aidala, C., Ajitanand, N. N., Akiba, Y., Akimoto, R., Al-Ta'ani, H., Alexander, J., Alfred, M., Angerami, A., Aoki, K., Apadula, N., Aramaki, Y., Asano, H., Aschenauer, E. C., Atomssa, E. T., Awes, T. C., Azmoun, B., Babintsev, V., Bai, M., Bannier, B., Barish, K. N., Bassalleck, B., Bathe, S., Baublis, V., Baumgart, S., Bazilevsky, A., Belmont, R., Berdnikov, A., Berdnikov, Y., Bichon, L., Blankenship, B., Blau, D. S., Bok, J. S., Borisov, V., Boyle, K., Brooks, M. L., Buesching, H., Bumazhnov, V., Butsyk, S., Campbell, S., Roman, V. Canoa, Castera, P., Chen, C. -H., Chiu, M., Chi, C. Y., Choi, I. J., Choi, J. B., Choi, S., Choudhury, R. K., Christiansen, P., Chujo, T., Chvala, O., Cianciolo, V., Citron, Z., Cole, B. A., Connors, M., Corliss, R., Morales, Y. Corrales, Csanád, M., Csörgő, T., D'Orazio, L., Dairaku, S., Datta, A., Daugherity, M. S., David, G., Dean, C. T., Denisov, A., Deshpande, A., Desmond, E. J., Dharmawardane, K. V., Dietzsch, O., Ding, L., Dion, A., Donadelli, M., Doomra, V., Drapier, O., Drees, A., Drees, K. A., Durham, J. M., Durum, A., Edwards, S., Efremenko, Y. V., Engelmore, T., Enokizono, A., Esha, R., Eyser, K. O., Fadem, B., Fan, W., Fields, D. E., Finger, Jr., M., Finger, M., Firak, D., Fitzgerald, D., Fleuret, F., Fokin, S. L., Frantz, J. E., Franz, A., Frawley, A. D., Fukao, Y., Fusayasu, T., Gainey, K., Gal, C., Garishvili, A., Garishvili, I., Giles, M., Glenn, A., Gong, X., Gonin, M., Goto, Y., de Cassagnac, R. Granier, Grau, N., Greene, S. V., Perdekamp, M. Grosse, Gunji, T., Guo, L., Gustafsson, H. -Å., Hachiya, T., Haggerty, J. S., Hahn, K. I., Hamagaki, H., Hanks, J., Harvey, M., Hasegawa, S., Hashimoto, K., Haslum, E., Hayano, R., Hemmick, T. K., Hester, T., He, X., Hill, J. C., Hodges, A., Hollis, R. S., Homma, K., Hong, B., Horaguchi, T., Hori, Y., Huang, J., Ichihara, T., Iinuma, H., Ikeda, Y., Imrek, J., Inaba, M., Iordanova, A., Isenhower, D., Issah, M., Ivanishchev, D., Jacak, B. V., Javani, M., Jiang, X., Ji, Z., Johnson, B. M., Joo, K. S., Jouan, D., Jumper, D. S., Kamin, J., Kaneti, S., Kang, B. H., Kang, J. H., Kang, J. S., Kapustinsky, J., Karatsu, K., Kasai, M., Kawall, D., Kazantsev, A. V., Kempel, T., Khachatryan, V., Khanzadeev, A., Khatiwada, A., Kijima, K. M., Kim, B. I., Kim, C., Kim, D. J., Kim, E. -J., Kim, H. J., Kim, K. -B., Kim, T., Kim, Y. -J., Kim, Y. K., Kincses, D., Kingan, A., Kinney, E., Kiss, Á., Kistenev, E., Klatsky, J., Kleinjan, D., Kline, P., Komatsu, Y., Komkov, B., Koster, J., Kotchetkov, D., Kotov, D., Kovacs, L., Krizek, F., Král, A., Kunde, G. J., Kurgyis, B., Kurita, K., Kurosawa, M., Kwon, Y., Kyle, G. S., Lai, Y. S., Lajoie, J. G., Larionova, D., Lebedev, A., Lee, B., Lee, D. M., Lee, J., Lee, K. B., Lee, K. S., Lee, S. H., Lee, S. R., Leitch, M. J., Leite, M. A. L., Leitgab, M., Lewis, B., Lewis, N. A., Lim, S. H., Levy, L. A. Linden, Liu, M. X., Li, X., Loomis, D. A., Love, B., Lökös, S., Maguire, C. F., Majoros, T., Makdisi, Y. I., Makek, M., Manion, A., Manko, V. I., Mannel, E., Masumoto, S., McCumber, M., McGaughey, P. L., McGlinchey, D., McKinney, C., Mendoza, M., Meredith, B., Miake, Y., Mibe, T., Mignerey, A. C., Milov, A., Mishra, D. K., Mitchell, J. T., Mitrankova, M., Mitrankov, Iu., Miyachi, Y., Miyasaka, S., Mohanty, A. K., Mohapatra, S., Mondal, M. M., Moon, H. J., Moon, T., Morrison, D. P., Motschwiller, S., Moukhanova, T. V., Muhammad, A., Mulilo, B., Murakami, T., Murata, J., Mwai, A., Nagae, T., Nagamiya, S., Nagle, J. L., Nagy, M. I., Nakagawa, I., Nakamiya, Y., Nakamura, K. R., Nakamura, T., Nakano, K., Nattrass, C., Nederlof, A., Nelson, S., Nihashi, M., Nouicer, R., Novák, T., Novitzky, N., Nukazuka, G., Nyanin, A. S., O'Brien, E., Ogilvie, C. A., Oh, J., Okada, K., Orosz, M., Osborn, J. D., Oskarsson, A., Ouchida, M., Ozawa, K., Pak, R., Pantuev, V., Papavassiliou, V., Park, B. H., Park, I. H., Park, J. S., Park, S., Park, S. K., Patel, L., Patel, M., Pate, S. F., Pei, H., Peng, J. -C., Peng, W., Pereira, H., Perepelitsa, D. V., Peressounko, D. Yu., PerezLara, C. E., Petti, R., Pinkenburg, C., Pisani, R. P., Potekhin, M., Proissl, M., Pun, A., Purschke, M. L., Qu, H., Radzevich, P. V., Rak, J., Ramasubramanian, N., Ravinovich, I., Read, K. F., Reynolds, D., Riabov, V., Riabov, Y., Richardson, E., Richford, D., Roach, D., Roche, G., Rolnick, S. D., Rosati, M., Runchey, J., Sahlmueller, B., Saito, N., Sakaguchi, T., Sako, H., Samsonov, V., Sano, M., Sarsour, M., Sato, S., Sawada, S., Sedgwick, K., Seidl, R., Sen, A., Seto, R., Sharma, D., Shein, I., Shi, Z., Shibata, M., Shibata, T. -A., Shigaki, K., Shimomura, M., Shoji, K., Shukla, P., Sickles, A., Silva, C. L., Silvermyr, D., Sim, K. S., Singh, B. K., Singh, C. P., Singh, V., Slunečka, M., Smith, K. L., Soltz, R. A., Sondheim, W. E., Sorensen, S. P., Sourikova, I. V., Stankus, P. W., Stenlund, E., Stepanov, M., Ster, A., Stoll, S. P., Sugitate, T., Sukhanov, A., Sun, J., Sun, Z., Sziklai, J., Takagui, E. M., Takahama, R., Takahara, A., Taketani, A., Tanaka, Y., Taneja, S., Tanida, K., Tannenbaum, M. J., Tarafdar, S., Taranenko, A., Tennant, E., Themann, H., Todoroki, T., Tomášek, L., Tomášek, M., Torii, H., Towell, R. S., Tserruya, I., Tsuchimoto, Y., Tsuji, T., Ueda, Y., Ujvari, B., Vale, C., van Hecke, H. W., Vargyas, M., Vazquez-Zambrano, E., Veicht, A., Vértesi, R., Velkovska, J., Virius, M., Vossen, A., Vrba, V., Vznuzdaev, E., Wang, X. R., Wang, Z., Watanabe, D., Watanabe, K., Watanabe, Y., Watanabe, Y. S., Wei, F., Wei, R., White, S. N., Winter, D., Wolin, S., Wong, C. P., Woody, C. L., Wysocki, M., Xia, B., Yamaguchi, Y. L., Yang, R., Yanovich, A., Ying, J., Yokkaichi, S., Younus, I., You, Z., Yushmanov, I. E., Zajc, W. A., Zelenski, A., and Zou, L.
- Subjects
Nuclear Experiment - Abstract
The measurement of direct photons from Au$+$Au collisions at $\sqrt{s_{_{NN}}}=39$ and 62.4 GeV in the transverse-momentum range $0.4
- Published
- 2022
- Full Text
- View/download PDF
8. Search for Exoplanets around Northern Circumpolar Stars V. Three likely planetary companions to the giant stars HD 19615, HD 150010, and HD 174205
- Author
-
Jeong, G., Lee, B. C., Park, M. G., Bang, T. Y., and Han, I.
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
Aims. We report the detection of long-period radial velocity (RV) variations in three giant stars, HD 19615, HD 150010, and HD 174205, using precise RV measurements. Methods. These detections are part of the Search for Exoplanets around Northern Circumpolar Stars (SENS) survey being conducted at the Bohyunsan Optical Astronomy Observatory (BOAO). The nature of the RV variations was investigated by analyzing the photometric and line shape variations. We found no variability with the RV period in these quantities and conclude that the RV variations are most likely caused by planetary companions. Results. Orbital solutions for the three stars yield orbital periods of 402 d, 562 d, and 582 d and minimum masses of 8.5 MJ , 2.4 MJ , and 4.2 MJ , respectively. These masses and periods are typical for planets around intermediate-mass stars, although some unclear interpretations and recent studies may being calling some planet convictions into question. Nevertheless, the SENS program is contributing to our knowledge of giant planets around intermediate-mass stars., Comment: 6 pages, 4 figures
- Published
- 2021
- Full Text
- View/download PDF
9. Screening of ion-ion correlations in electrolyte solutions adsorbed in charged disordered matrices: Application of replica Ornstein-Zernike equations
- Author
-
Mlakar, T. and Hribar-Lee, B.
- Subjects
Condensed Matter - Soft Condensed Matter - Abstract
The replica Ornstein-Zernike equations for an electrolyte adsorbed in a charged, disordered matrix were applied to a model, where both subsystems consisted of points carrying a single (positive or negative) charge. While the system as a whole was electroneutral, each of the subsytems had a net charge. The results of this study are compared with the ones previously obtained, where the interactions in such a system were considered to be the same as in the case of electroneutral subsystems., Comment: 8 pages, 2 figures
- Published
- 2021
- Full Text
- View/download PDF
10. Tetrahedrality, hydrogen bonding and the density anomaly of the central force water model. A Monte Carlo study
- Author
-
Ravnik, V., Hribar-Lee, B., Pizio, O., and Luksic, M.
- Subjects
Condensed Matter - Soft Condensed Matter - Abstract
Monte Carlo computer simulations in the canonical and grand canonical statistical ensemble were used to explore the properties of the central force (CF1) water model. The intramolecular structure of the H$_2$O molecule is well reproduced by the model. Emphasis was made on hydrogen bonding, and on the tehrahedral, $q$, and translational, $\tau$, order parameters. An energetic definition of the hydrogen bond gives more consistent results for the average number of hydrogen bonds compared to the one-parameter distance criterion. At 300 K, an average value of 3.8 was obtained. The $q$ and $\tau$ metrics were used to elucidate the water-like anomalous behaviour of the CF1 model. The structural anomalies lead to the density anomaly, with a good agreement of the model's density with the experimental $\rho(T)$ trends. The chemical potential-density projection of the model's equation of state was explored. Vapour-liquid coexistence was observed at sufficiently low temperatures., Comment: 12 pages, 9 figures, 2 tables
- Published
- 2021
- Full Text
- View/download PDF
11. CLMM: a LSST-DESC Cluster weak Lensing Mass Modeling library for cosmology
- Author
-
Aguena, M., Avestruz, C., Combet, C., Fu, S., Herbonnet, R., Malz, A. I., Penna-Lima, M., Ricci, M., Vitenti, S. D. P., Baumont, L., Fan, H., Fong, M., Ho, M., Kirby, M., Payerne, C., Boutigny, D., Lee, B., Liu, B., McClintock, T., Miyatake, H., Sifón, C., von der Linden, A., Wu, H., Yoon, M., and Collaboration, The LSST Dark Energy Science
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
We present the v1.0 release of CLMM, an open source Python library for the estimation of the weak lensing masses of clusters of galaxies. CLMM is designed as a standalone toolkit of building blocks to enable end-to-end analysis pipeline validation for upcoming cluster cosmology analyses such as the ones that will be performed by the LSST-DESC. Its purpose is to serve as a flexible, easy-to-install and easy-to-use interface for both weak lensing simulators and observers and can be applied to real and mock data to study the systematics affecting weak lensing mass reconstruction. At the core of CLMM are routines to model the weak lensing shear signal given the underlying mass distribution of galaxy clusters and a set of data operations to prepare the corresponding data vectors. The theoretical predictions rely on existing software, used as backends in the code, that have been thoroughly tested and cross-checked. Combined, theoretical predictions and data can be used to constrain the mass distribution of galaxy clusters as demonstrated in a suite of example Jupyter Notebooks shipped with the software and also available in the extensive online documentation., Comment: 21 pages, 6 figures, accepted for publication by MNRAS
- Published
- 2021
- Full Text
- View/download PDF
12. Green IoT using UAVs in B5G Networks: A Review of Applications and Strategies
- Author
-
Alsamhi, S. H., Afghah, Fatemeh, Sahal, Radhya, Hawbani, Ammar, Al-qaness, A. A., Lee, B., and Guizani, Mohsen
- Subjects
Electrical Engineering and Systems Science - Signal Processing - Abstract
Unmanned Aerial Vehicles (UAVs) present a promising advanced technology that can enhance people life quality and smartness of cities dramatically and increase overall economic efficiency. UAVs have attained a significant interest in supporting many applications such as surveillance, agriculture, communication, transportation, pollution monitoring, disaster management, public safety, healthcare, and environmental preservation. Industry 4.0 applications are conceived of intelligent things that can automatically and collaboratively improve beyond 5G (B5G). Therefore, the Internet of Things (IoT) is required to ensure collaboration between the vast multitude of things efficiently anywhere in real-world applications that are monitored in real-time. However, many IoT devices consume a significant amount of energy when transmitting the collected data from surrounding environments. Due to a drone's capability to fly closer to IoT, UAV technology plays a vital role in greening IoT by transmitting collected data to achieve a sustainable, reliable, eco-friendly Industry 4.0. This survey presents an overview of the techniques and strategies proposed recently to achieve green IoT using UAVs infrastructure for a reliable and sustainable smart world. This survey is different from other attempts in terms of concept, focus, and discussion. Finally, various use cases, challenges, and opportunities regarding green IoT using UAVs are presented.
- Published
- 2021
13. Blockchain for Decentralized Multi-Drone to Combat COVID-19
- Author
-
Alsamhi, S. H., Lee, B., Guizani, M., Kumar, N., Qiao, Y., and Liu, Xuan
- Subjects
Computer Science - Distributed, Parallel, and Cluster Computing ,Electrical Engineering and Systems Science - Systems and Control - Abstract
Currently, drones represent a promising technology for combating Coronavirus disease 2019 (COVID-19) due to the transport of goods, medical supplies to a given target location in the quarantine areas experiencing an epidemic outbreak. Drone missions will increasingly rely on drone collaboration, which requires the drones to reduce communication complexity and be controlled in a decentralized fashion. Blockchain technology becomes a must in industrial applications because it provides decentralized data, accessibility, immutability, and irreversibility. Therefore, Blockchain makes data public for all drones and enables drones to log information concerning world states, time, location, resources, delivery data, and drone relation to all neighbors drones. This paper introduces decentralized independent multi-drones to accomplish the task collaboratively. Improving blockchain with a consensus algorithm can improve network partitioning and scalability in order to combat COVID-19. The multi-drones task is to combat COVID-19 via monitoring and detecting, social distancing, sanitization, data analysis, delivering goods and medical supplies, and announcement while avoiding collisions with one another. We discuss End to End (E2E) delivery application of combination blockchain and multi-drone in combating COVID-19 and beyond future pandemics. Furthermore, the challenges and opportunities of our proposed framework are highlighted.
- Published
- 2021
14. Joint Survey Processing of Euclid, Rubin and Roman: Final Report
- Author
-
Chary, R., Helou, G., Brammer, G., Capak, P., Faisst, A., Flynn, D., Groom, S., Ferguson, H. C., Grillmair, C., Hemmati, S., Koekemoer, A., Lee, B., Malhotra, S., Miyatake, H., Melchior, P., Momcheva, I., Newman, J., Masiero, J., Paladini, R., Prakash, A., Rusholme, B., Stickley, N. R., Smith, A., Wood-Vasey, W. M., and Teplitz, H. I.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The Euclid, Rubin/LSST and Roman (WFIRST) projects will undertake flagship optical/near-infrared surveys in the next decade. By mapping thousands of square degrees of sky and covering the electromagnetic spectrum between 0.3 and 2 microns with sub-arcsec resolution, these projects will detect several tens of billions of sources, enable a wide range of astrophysical investigations by the astronomical community and provide unprecedented constraints on the nature of dark energy and dark matter. The ultimate cosmological, astrophysical and time-domain science yield from these missions will require joint survey processing (JSP) functionality at the pixel level that is outside the scope of the individual survey projects. The JSP effort scoped here serves two high-level objectives: 1) provide precise concordance multi-wavelength images and catalogs over the entire sky area where these surveys overlap, which accounts for source confusion and mismatched isophotes, and 2) provide a science platform to analyze concordance images and catalogs to enable a wide range of astrophysical science goals to be formulated and addressed by the research community. For the cost of about 200WY, JSP will allow the U.S. (and international) astronomical community to manipulate the flagship data sets and undertake innovative science investigations ranging from solar system object characterization, exoplanet detections, nearby galaxy rotation rates and dark matter properties, to epoch of reionization studies. It will also allow for the ultimate constraints on cosmological parameters and the nature of dark energy, with far smaller uncertainties and a better handle on systematics than by any one survey alone., Comment: Final Report from March 2019 submitted to NASA, NSF, DOE, 41 pages. This is the extended version of the Astro2020 white papers
- Published
- 2020
15. Measurement of jet-medium interactions via direct photon-hadron correlations in Au$+$Au and $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV
- Author
-
Acharya, U., Adare, A., Afanasiev, S., Aidala, C., Ajitanand, N. N., Akiba, Y., Akimoto, R., Al-Bataineh, H., Alexander, J., Al-Ta'ani, H., Angerami, A., Aoki, K., Apadula, N., Aramaki, Y., Asano, H., Aschenauer, E. C., Atomssa, E. T., Averbeck, R., Awes, T. C., Azmoun, B., Babintsev, V., Bai, M., Baksay, G., Baksay, L., Bannier, B., Barish, K. N., Bassalleck, B., Basye, A. T., Bathe, S., Baublis, V., Baumann, C., Baumgart, S., Bazilevsky, A., Belikov, S., Belmont, R., Bennett, R., Berdnikov, A., Berdnikov, Y., Bhom, J. H., Bichon, L., Bickley, A. A., Black, D., Blankenship, B., Blau, D. S., Bok, J. S., Borisov, V., Boyle, K., Brooks, M. L., Bryslawskyj, J., Buesching, H., Bumazhnov, V., Bunce, G., Butsyk, S., Camacho, C. M., Campbell, S., Roman, V. Canoa, Caringi, A., Castera, P., Chen, C. -H., Chi, C. Y., Chiu, M., Choi, I. J., Choi, J. B., Choi, S., Choudhury, R. K., Christiansen, P., Chujo, T., Chung, P., Chvala, O., Cianciolo, V., Citron, Z., Cole, B. A., del Valle, Z. Conesa, Connors, M., Constantin, P., Cronin, N., Crossette, N., Csanád, M., Csörgő, T., Dahms, T., Dairaku, S., Danchev, I., Das, K., Datta, A., Daugherity, M. S., David, G., Dayananda, M. K., DeBlasio, K., Dehmelt, K., Denisov, A., Deshpande, A., Desmond, E. J., Dharmawardane, K. V., Dietzsch, O., Ding, L., Dion, A., Do, J. H., Donadelli, M., D'Orazio, L., Drapier, O., Drees, A., Drees, K. A., Durham, J. M., Durum, A., Dutta, D., Edwards, S., Efremenko, Y. V., Ellinghaus, F., Engelmore, T., Enokizono, A., En'yo, H., Esha, R., Esumi, S., Eyser, K. O., Fadem, B., Fan, W., Fields, D. E., Finger, M., Finger, Jr., M., Firak, D., Fitzgerald, D., Fleuret, F., Fokin, S. L., Fraenkel, Z., Frantz, J. E., Franz, A., Frawley, A. D., Fujiwara, K., Fukao, Y., Fusayasu, T., Gainey, K., Gal, C., Garg, P., Garishvili, A., Garishvili, I., Giordano, F., Glenn, A., Gong, H., Gong, X., Gonin, M., Goto, Y., de Cassagnac, R. Granier, Grau, N., Greene, S. V., Grim, G., Perdekamp, M. Grosse, Gu, Y., Gunji, T., Guo, L., Gustafsson, H. -Å., Hachiya, T., Haggerty, J. S., Hahn, K. I., Hamagaki, H., Hamblen, J., Han, R., Han, S. Y., Hanks, J., Hartouni, E. P., Hasegawa, S., Hashimoto, K., Haslum, E., Hayano, R., Hayashi, S., He, X., Heffner, M., Hemmick, T. K., Hester, T., Hill, J. C., Hodges, A., Hohlmann, M., Hollis, R. S., Holzmann, W., Homma, K., Hong, B., Horaguchi, T., Hori, Y., Hornback, D., Huang, J., Huang, S., Ichihara, T., Ichimiya, R., Ide, J., Iinuma, H., Ikeda, Y., Imai, K., Imazu, Y., Imrek, J., Inaba, M., Iordanova, A., Isenhower, D., Ishihara, M., Isinhue, A., Isobe, T., Issah, M., Isupov, A., Ivanishchev, D., Iwanaga, Y., Jacak, B. V., Javani, M., Ji, Z., Jia, J., Jiang, X., Jin, J., Johnson, B. M., Jones, T., Joo, K. S., Jouan, D., Jumper, D. S., Kajihara, F., Kametani, S., Kamihara, N., Kamin, J., Kaneti, S., Kang, B. H., Kang, J. H., Kang, J. S., Kapustinsky, J., Karatsu, K., Kasai, M., Kawall, D., Kawashima, M., Kazantsev, A. V., Kempel, T., Key, J. A., Khachatryan, V., Khandai, P. K., Khanzadeev, A., Khatiwada, A., Kijima, K. M., Kikuchi, J., Kim, A., Kim, B. I., Kim, C., Kim, D. H., Kim, D. J., Kim, E., Kim, E. -J., Kim, H. J., Kim, K. -B., Kim, S. H., Kim, Y. -J., Kim, Y. K., Kincses, D., Kinney, E., Kiriluk, K., Kiss, Á., Kistenev, E., Klatsky, J., Kleinjan, D., Kline, P., Kochenda, L., Komatsu, Y., Komkov, B., Konno, M., Koster, J., Kotchetkov, D., Kotov, D., Kozlov, A., Král, A., Kravitz, A., Krizek, F., Kunde, G. J., Kurgyis, B., Kurita, K., Kurosawa, M., Kwon, Y., Kyle, G. S., Lacey, R., Lai, Y. S., Lajoie, J. G., Larionova, D., Larionova, M., Lebedev, A., Lee, B., Lee, D. M., Lee, J., Lee, K., Lee, K. B., Lee, K. S., Lee, S. H., Lee, S. R., Leitch, M. J., Leite, M. A. L., Leitgab, M., Leitner, E., Lenzi, B., Lewis, B., Lewis, N. A., Li, X., Lichtenwalner, P., Liebing, P., Lim, S. H., Levy, L. A. Linden, Liška, T., Litvinenko, A., Liu, H., Liu, M. X., Lökös, S., Love, B., Luechtenborg, R., Lynch, D., Maguire, C. F., Majoros, T., Makdisi, Y. I., Makek, M., Malakhov, A., Malik, M. D., Manion, A., Manko, V. I., Mannel, E., Mao, Y., Masui, H., Masumoto, S., Matathias, F., McCumber, M., McGaughey, P. L., McGlinchey, D., McKinney, C., Means, N., Meles, A., Mendoza, M., Meredith, B., Metzger, W. J., Miake, Y., Mibe, T., Midori, J., Mignerey, A. C., Mikeš, P., Miki, K., Milov, A., Mishra, D. K., Mishra, M., Mitchell, J. T., Mitrankov, Iu., Miyachi, Y., Miyasaka, S., Mohanty, A. K., Mohapatra, S., Moon, H. J., Moon, T., Morino, Y., Morreale, A., Morrison, D. P., Morrow, S. I., Moskowitz, M., Motschwiller, S., Moukhanova, T. V., Mulilo, B., Murakami, T., Murata, J., Mwai, A., Nagae, T., Nagamiya, S., Nagle, J. L., Naglis, M., Nagy, M. I., Nakagawa, I., Nakamiya, Y., Nakamura, K. R., Nakamura, T., Nakano, K., Nam, S., Nattrass, C., Nederlof, A., Nelson, S., Netrakanti, P. K., Newby, J., Nguyen, M., Nihashi, M., Niida, T., Nouicer, R., Novitzky, N., Nukariya, A., Nyanin, A. S., Oakley, C., Obayashi, H., O'Brien, E., Oda, S. X., Ogilvie, C. A., Oka, M., Okada, K., Onuki, Y., Osborn, J. D., Oskarsson, A., Ouchida, M., Ozawa, K., Pak, R., Pantuev, V., Papavassiliou, V., Park, B. H., Park, I. H., Park, J., Park, S., Park, S. K., Park, W. J., Pate, S. F., Patel, L., Patel, M., Pei, H., Peng, J. -C., Peng, W., Pereira, H., Perepelitsa, D. V., Peresedov, V., Peressounko, D. Yu., PerezLara, C. E., Petti, R., Pinkenburg, C., Pisani, R. P., Proissl, M., Pun, A., Purschke, M. L., Purwar, A. K., Qu, H., Radzevich, P. V., Rak, J., Rakotozafindrabe, A., Ramasubramanian, N., Ravinovich, I., Read, K. F., Rembeczki, S., Reygers, K., Reynolds, D., Riabov, V., Riabov, Y., Richardson, E., Richford, D., Rinn, T., Riveli, N., Roach, D., Roche, G., Rolnick, S. D., Rosati, M., Rosen, C. A., Rosendahl, S. S. E., Rosnet, P., Rukoyatkin, P., Runchey, J., Ružička, P., Ryu, M. S., Sahlmueller, B., Saito, N., Sakaguchi, T., Sakashita, K., Sako, H., Samsonov, V., Sano, M., Sano, S., Sarsour, M., Sato, S., Sato, T., Sawada, S., Sedgwick, K., Seele, J., Seidl, R., Semenov, A. Yu., Sen, A., Seto, R., Sett, P., Sharma, D., Shein, I., Shibata, T. -A., Shigaki, K., Shimomura, M., Shoji, K., Shukla, P., Sickles, A., Silva, C. L., Silvermyr, D., Silvestre, C., Sim, K. S., Singh, B. K., Singh, C. P., Singh, V., Skolnik, M., Slunečka, M., Smith, K. L., Solano, S., Soltz, R. A., Sondheim, W. E., Sorensen, S. P., Sourikova, I. V., Sparks, N. A., Stankus, P. W., Steinberg, P., Stenlund, E., Stepanov, M., Ster, A., Stoll, S. P., Sugitate, T., Sukhanov, A., Sun, J., Sun, X., Sun, Z., Sziklai, J., Takagui, E. M., Takahara, A., Taketani, A., Tanabe, R., Tanaka, Y., Taneja, S., Tanida, K., Tannenbaum, M. J., Tarafdar, S., Taranenko, A., Tarján, P., Tennant, E., Themann, H., Thomas, D., Thomas, T. L., Todoroki, T., Togawa, M., Toia, A., Tomášek, L., Tomášek, M., Torii, H., Towell, R. S., Tserruya, I., Tsuchimoto, Y., Tsuji, T., Ueda, Y., Ujvari, B., Vale, C., Valle, H., van Hecke, H. W., Vargyas, M., Vazquez-Zambrano, E., Veicht, A., Velkovska, J., Vértesi, R., Vinogradov, A. A., Virius, M., Voas, B., Vossen, A., Vrba, V., Vznuzdaev, E., Wang, X. R., Watanabe, D., Watanabe, K., Watanabe, Y., Watanabe, Y. S., Wei, F., Wei, R., Wessels, J., Whitaker, S., White, S. N., Winter, D., Wolin, S., Wong, C. P., Wood, J. P., Woody, C. L., Wright, R. M., Wu, Y., Wysocki, M., Xia, B., Xie, W., Xu, Q., Yamaguchi, Y. L., Yamaura, K., Yang, R., Yanovich, A., Ying, J., Yokkaichi, S., Yoon, I., You, Z., Young, G. R., Younus, I., Yushmanov, I. E., Zajc, W. A., Zelenski, A., Zhai, Y., Zhang, C., Zharko, S., Zhou, S., Zolin, L., and Zou, L.
- Subjects
High Energy Physics - Experiment ,Nuclear Experiment - Abstract
We present direct photon-hadron correlations in 200 GeV/A Au$+$Au, $d$$+$Au and $p$$+$$p$ collisions, for direct photon $p_T$ from 5--12 GeV/$c$, collected by the PHENIX Collaboration in the years from 2006 to 2011. We observe no significant modification of jet fragmentation in $d$$+$Au collisions, indicating that cold nuclear matter effects are small or absent. Hadrons carrying a large fraction of the quark's momentum are suppressed in Au$+$Au compared to $p$$+$$p$ and $d$$+$Au. As the momentum fraction decreases, the yield of hadrons in Au$+$Au increases to an excess over the yield in $p$$+$$p$ collisions. The excess is at large angles and at low hadron $p_T$ and is most pronounced for hadrons associated with lower momentum direct photons. Comparison to theoretical calculations suggests that the hadron excess arises from medium response to energy deposited by jets., Comment: 578 authors from 80 institutions, 11 pages, 7 figures, data from 2007, 2008, 2010, and 2011. v2 is version accepted for publication in Physical Review C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.html
- Published
- 2020
- Full Text
- View/download PDF
16. The classification of flat Riemannian metrics on the plane
- Author
-
Coll, Jr., Vincent E. and Whitt, Lee B.
- Subjects
Mathematics - Differential Geometry - Abstract
We classify all smooth flat Riemannian metrics on the two-dimensional plane. In the complete case, it is well-known that these metrics are isometric to the Euclidean metric. In the incomplete case, there is an abundance of naturally-arising, non-isometric metrics that are relevant and useful. Remarkably, the study and classification of all flat Riemannian metrics on the plane -- as a subject -- is new to the literature. Much of our research focuses on conformal metrics of the form $e^{2\varphi}g_0$, where $\varphi : \mathbb{R}^2 \rightarrow \mathbb{R)$ is a harmonic function and $g_0$ is the standard Euclidean metric on $\mathbb{R}^2$. We find that all such metrics, which we call "harmonic", arise from Riemann surfaces.
- Published
- 2020
17. $E0$ transition strength in stable Ni isotopes
- Author
-
Evitts, L. J., Garnsworthy, A. B., Kibedi, T., Smallcombe, J., Reed, M. W., Stuchbery, A. E., Lane, G. J., Eriksen, T. K., Akber, A., Alshahrani, B., de Vries, M., Gerathy, M. S. M., Holt, J. D., Lee, B. Q., McCormick, B. P., Mitchell, A. J., Moukaddam, M., Mukhopadhyay, S., Palalani, N., Palazzo, T., Peters, E. E., Ramirez, A. P. D., Tornyi, T., and Yates, S. W.
- Subjects
Nuclear Experiment - Abstract
Excited states in $^{58,60,62}$Ni were populated via inelastic proton scattering at the Australian National University as well as via inelastic neutron scattering at the University of Kentucky Accelerator Laboratory. The Super-e electron spectrometer and the CAESAR Compton-suppressed HPGe array were used in complementary experiments to measure conversion coefficients and $\delta(E2/M1)$ mixing ratios, respectively, for a number of $2^+ \rightarrow 2^+$ transitions. The data obtained were combined with lifetimes and branching ratios to determine $E0$, $M1$, and $E2$ transition strengths between $2^+$ states. The $E0$ transition strengths between $0^+$ states were measured using internal conversion electron spectroscopy and compare well to previous results from internal pair formation spectroscopy. The $E0$ transition strengths between the lowest-lying $2^+$ states were found to be consistently large for the isotopes studied.
- Published
- 2019
18. Joint Survey Processing of LSST, Euclid and WFIRST: Enabling a broad array of astrophysics and cosmology through pixel level combinations of datasets
- Author
-
Chary, R., Brammer, G., Capak, P., Dawson, W., Faisst, A., Fajardo-Acosta, S., Ferguson, H. C., Grillmair, C. J., Hemmati, S., Koekemoer, A., Lee, B., Lupton, R., Malhotra, S., Melchior, P., Momcheva, I., Newman, J., Masiero, J., Paladini, R., Prakash, A., Rhodes, J., Rusholme, B., Schneider, M., Stickley, N., Smith, A., Wood-Vasey, W. M., and Berriman, G. B.
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Joint survey processing (JSP) is the pixel level combination of LSST, Euclid, and WFIRST datasets. By combining the high spatial resolution of the space-based datasets with deep, seeing-limited, ground-based images in the optical bands, systematics like source confusion and astrometric mismatch can be addressed to derive the highest precision optical/infrared photometric catalogs. This white paper highlights the scientific motivation, computational and algorithmic needs to build joint pixel level processing capabilities, which the individual projects by themselves will not be able to support. Through this white paper, we request that the Astro2020 decadal committee recognize the JSP effort as a multi-agency project with the natural outcome being a collaborative effort among groups which are normally supported by a single agency. JSP will allow the U.S. (and international) astronomical community to manipulate the flagship data sets and undertake innovative science investigations ranging from solar system object characterization, exoplanet detections, nearby galaxy rotation rates and dark matter properties, to epoch of reionization studies. It will also result in the ultimate constraints on cosmological parameters and the nature of dark energy, with far smaller uncertainties and a better handle on systematics than by any one survey alone., Comment: Astro2020 APC White Paper, 11 pages
- Published
- 2019
19. High-resolution conversion electron spectroscopy of the 125I electron-capture decay
- Author
-
Tee, B. P. E., Stuchbery, A. E., Vos, M., Dowie, J. T. H., Lee, B. Q., Alotiby, M., Greguric, I., and Kibedi, T.
- Subjects
Nuclear Experiment ,Physics - Atomic Physics - Abstract
The conversion electrons from the decay of the 35.5-keV excited state of 125Te following the electron capture decay of 125I have been investigated at high resolution using an electrostatic spectrometer. The penetration parameter lambda = -1.2(6) and mixing ratio |delta| = 0.015(2) were deduced by fitting to literature values and present data. The shake probability of the conversion electrons is estimated to be 0.5, more than two times larger than the predicted value of 0.2., Comment: Accepted for Physical Review C, 11 pages, 5 figures
- Published
- 2019
- Full Text
- View/download PDF
20. The Flat Plane and a Constructive Proof of Minding's Theorem
- Author
-
Coll, Jr., Vincent E. and Whitt, Lee B.
- Subjects
Mathematics - Differential Geometry - Abstract
Minding's most celebrated result is his namesake theorem of 1839 which established that all surfaces having the same constant curvature must be locally isometric. Today, Minding's theorem is a staple in differential geometry textbooks. But, to the best of our knowledge, all published proofs of it, inclusive of Minding's original argument are existential in nature. In this note, we give a constructive proof of Minding's theorem in the flat case. The proof requires only some basic facts about harmonic functions and complex analytic functions.
- Published
- 2019
21. A quasi-probability for the arrival time problem with links to backflow and the Leggett-Garg inequalities
- Author
-
Halliwell, J. J., Beck, H., Lee, B. K. B., and O'Brien, S.
- Subjects
Quantum Physics - Abstract
The arrival time problem for the free particle in one dimension may be formulated as the problem of determining a joint probability for the particle being found on opposite sides of the $x$-axis at two different times. We explore this problem using a two-time quasi-probability linear in the projection operators, a natural counterpart of the corresponding classical problem. We show that it can be measured either indirectly, by measuring its moments in different experiments, or directly, in a single experiment using a pair of sequential measurements in which the first measurement is weak (or more generally, ambiguous). We argue that when positive, it corresponds to a measurement-independent arrival time probability. For small time intervals it coincides approximately with the time-averaged current, in agreement with semiclassical expectations. The quasi-probability can be negative and we exhibit a number of situations in which this is the case. We interpret these situations as the presence of `quantumness', in which the arrival time probability is not properly defined in a measurement-independent manner. Backflow states, in which the current flows in the direction opposite to the momentum, are shown to provide an interesting class of examples such situations. We also show that the quasi-probability is closely linked to a set of two-time Leggett-Garg inequalities, which test for macroscopic realism., Comment: 30 pages, Latex, 1 figure
- Published
- 2018
- Full Text
- View/download PDF
22. Influence of host matrices on krypton electron binding energies and KLL Auger transition energies
- Author
-
Inoyatov, A. Kh., Perevoshchikov, L. L., Kovalík, A., Filosofov, D. V., Yushkevich, Yu. V., Ryšavý, M., Lee, B. Q., Kibédi, T., Stuchbery, A. E., and Zhdanov, V. S.
- Subjects
Physics - Atomic Physics - Abstract
The low-energy electron spectra emitted in the radioactive decay of the $^{83}$Rb and $^{83}$Sr isotopes were measured with a combined electrostatic electron spectrometer. Radioactive sources used were prepared by ion implantation of $^{83}$Sr into a high purity polycrystalline platinum foil at 30 keV and by vacuum-evaporation deposition of $^{83}$ Rb on the same type of foil. From the measured conversion electron spectra, the electron binding energies (referenced to the Fermi level) for the K, L$_1$ , L$_2$ , L$_3$ , M$_1$ , M$_2$, and M$_3$ shell/subshells of krypton in the platinum host were determined to be 14 316.4(12), 1 914.3(9), 1 720.3(9), 1 667.6(9), 281.5(9), 209.6(13), and 201.2(15) eV, respectively, and those for the evaporated layer were observed to be lower by 0.7(1) eV. For both host matrices, values of 2.3(2), 4.6(2), 1.7(2), 1.3(2), and 3.2(3) eV were obtained for the krypton K, L$_1$ , L$_2$ , L$_3$ , and M$_1$ natural atomic level widths, respectively. The absolute energies of 10 838.5(9) and 10 839.5(10) eV were measured for the KL$_2$L$_3$ ($^{1}$D$_2$) Auger transition in krypton implanted in Pt and generated in the evaporated rubidium layer, respectively. A value of 601.0(8) eV was measured for the energy difference of the KL$_2$L$_3$ ($^{1}$D$_2$) transitions in Rb and Kr in the Pt host. Multiconfiguration Dirac-Fock calculations of the krypton KLL transition energies and intensities were also performed.
- Published
- 2018
- Full Text
- View/download PDF
23. The KLM+KLN Auger electron spectrum of rubidium in different matrices
- Author
-
Inoyatov, A. Kh., Kovalík, A., Perevoshchikov, L. L., Filosofov, D. V., Vénos, D., Lee, B. Q., Ekman, J., and Baimukhanova, A.
- Subjects
Physics - Atomic Physics - Abstract
The KLM+KLN Auger electron spectrum of rubidium (Z=37) emitted in the electron capture decay of radioactive $^{83}$Sr in a polycrystalline platinum matrix and also $^{85}$Sr in polycrystalline platinum and carbon matrices as well as in an evaporated layer onto a carbon backing was experimentally studied in detail for the first time using a combined electrostatic electron spectrometer. Energies, relative intensities, and natural widths of fifteen basic spectrum components were determined and compared with both theoretical predictions and experimental data for krypton (Z=36). Relative spectrum line energies obtained from the semi-empirical calculations in intermediate coupling scheme were found to agree within 3$\sigma$ with the measured values while disagreement with experiment exceeding 3$\sigma$ was often observed for values obtained from our multiconfiguration Dirac-Hartree-Fock calculations. The absolute energy of the dominant spectrum component given by the semi-empirical approach agrees within 1$\sigma$ with the measured value. Shifts of + (0.2$\pm$0.2) and - (1.9$\pm$0.2) eV were measured for the dominant KLM spectrum components between the $^{85}$Sr sources prepared by vacuum evaporation on and implanted into the carbon foil, respectively, relative to $^{85}$Sr implanted into the platinum foil. A value of (713$\pm$2) eV was determined for the energy difference of the dominant components of the KLM+KLN Auger electron spectra of rubidium and krypton generated in the polycrystalline platinum matrix. From the detailed analysis of the measured data and available theoretical results, the general conclusion can be drawn that the proper description of the KLM+KLN Auger electron spectrum for Z around 37 should still be based on intermediate coupling of angular momenta taking into account relativistic effects.
- Published
- 2018
- Full Text
- View/download PDF
24. Search for environmental effects on the KLL Auger spectrum of rubidium generated in radioactive decay
- Author
-
Inoyatov, A. Kh., Perevoshchikov, L. L., Kovalík, A., Filosofov, D. V., Yushkevich, Yu. V., Ryšavý, M., Lee, B. Q., Kibédi, T., Stuchbery, A. E., and Zhdanov, V. S.
- Subjects
Physics - Atomic Physics - Abstract
The KLL Auger spectrum of rubidium following the electron capture decay of $^{83}$Sr and $^{85}$Sr isotopes was experimentally studied in detail for the first time using one $^{83}$Sr source and three $^{85}$Sr sources in different host matrices. Energies, relative intensities, and natural widths of all the nine well-resolved basic spectrum components were determined and compared with both predictions and experimental data for krypton. Results of our multiconfiguration Dirac-Fock calculations demonstrated an influence of the "atomic structure effect" on absolute energies of the KLL transitions following the creation of initial vacancies by the electron capture decay. Environmental effects on the KLL Auger spectrum were distinctly observed only for the absolute transition energies., Comment: arXiv admin note: substantial text overlap with arXiv:1810.00102
- Published
- 2018
- Full Text
- View/download PDF
25. A Variational Feature Encoding Method of 3D Object for Probabilistic Semantic SLAM
- Author
-
Yu, H. W. and Lee, B. H.
- Subjects
Computer Science - Robotics ,Computer Science - Computer Vision and Pattern Recognition - Abstract
This paper presents a feature encoding method of complex 3D objects for high-level semantic features. Recent approaches to object recognition methods become important for semantic simultaneous localization and mapping (SLAM). However, there is a lack of consideration of the probabilistic observation model for 3D objects, as the shape of a 3D object basically follows a complex probability distribution. Furthermore, since the mobile robot equipped with a range sensor observes only a single view, much information of the object shape is discarded. These limitations are the major obstacles to semantic SLAM and view-independent loop closure using 3D object shapes as features. In order to enable the numerical analysis for the Bayesian inference, we approximate the true observation model of 3D objects to tractable distributions. Since the observation likelihood can be obtained from the generative model, we formulate the true generative model for 3D object with the Bayesian networks. To capture these complex distributions, we apply a variational auto-encoder. To analyze the approximated distributions and encoded features, we perform classification with maximum likelihood estimation and shape retrieval., Comment: to appear in the proceedings of IROS 2018
- Published
- 2018
26. Dispersive Corrections to the Born Approximation in Elastic Electron-Nucleus Scattering in the Intermediate Energy Regime
- Author
-
Gueye, P., Glister, A. A. Kabir J., Lee, B. W., Gilman, R., Higinbotham, D. W., Piasetzky, E., Ron, G., Sarty, A. J., Strauch, S., Adeyemi, A., Allada, K., Armstrong, W., Arrington, J., Arenhovel, H., Beck, A., Benmokhtar, F., Berman, B. L., Boeglin, W., Brash, E., Camsonne, A., Calarco, J., Chen, J. P., Choi, S., Chudakov, E., Coman, L., Craver, B., Cusanno, F., Dumas, J., Dutta, C., Feuerbach, R., Freyberger, A., Frullani, S., Garibaldi, F., Hansen, J. -O., Holmstrom, T., Hyde, C. E., Ibrahim, H., Ilieva, Y., Jiang, X., Jones, M. K., Katramatou, A. T., Kelleher, A., Khrosinkova, E., Kuchina, E., Kumbartzki, G., LeRose, J. J., Lindgren, R., Markowitz, P., Beck, S. May-Tal, McCullough, E., Meekins, D., Meziane, M., Meziani, Z. -E., Michaels, R., Moffit, B., Norum, B. E., Petratos, G. G., Oh, Y., Olson, M., Paolone, M., Paschke, K., Perdrisat, C. F., Potokar, M., Pomatsalyuk, R., Pomerantz, I., Puckett, A., Punjabi, V., Qian, X., Qiang, Y., Ransome, R. D., Reyhan, M., Roche, J., Rousseau, Y., Sawatzky, B., Schulte, E., Schwamb, M., Shabestari, M., Shahinyan, A., Shneor, R., Sirca, S., Slifer, K., Solvignon, P., Song, J., Sparks, R., Subedi, R., Urciuoli, G. M., Wang, K., Wojtsekhowski, B., Yan, X., Yao, H., Zhan, X., and Zhu, X.
- Subjects
Nuclear Experiment ,Nuclear Theory - Abstract
Measurements of elastic electron scattering data within the past decade have highlighted two-photon exchange contributions as a necessary ingredient in theoretical calculations to precisely evaluate hydrogen elastic scattering cross sections. This correction can modify the cross section at the few percent level. In contrast, dispersive effects can cause significantly larger changes from the Born approximation. The purpose of this experiment is to extract the carbon-12 elastic cross section around the first diffraction minimum, where the Born term contributions to the cross section are small to maximize the sensitivity to dispersive effects. The analysis uses the LEDEX data from the high resolution Jefferson Lab Hall A spectrometers to extract the cross sections near the first diffraction minimum of 12C at beam energies of 362 MeV and 685 MeV. The results are in very good agreement with previous world data, although with less precision. The average deviation from a static nuclear charge distribution expected from linear and quadratic fits indicate a 30.6% contribution of dispersive effects to the cross section at 1 GeV. The magnitude of the dispersive effects near the first diffraction minimum of 12C has been confirmed to be large with a strong energy dependence and could account for a large fraction of the magnitude for the observed quenching of the longitudinal nuclear response. These effects could also be important for nuclei radii extracted from parity-violating asymmetries measured near a diffraction minimum., Comment: 14 pages, 10 figures
- Published
- 2018
- Full Text
- View/download PDF
27. Prospects for Determining the Mass Distributions of Galaxy Clusters on Large Scales Using Weak Gravitational Lensing
- Author
-
Fong, M., Bowyer, R., Whitehead, A., Lee, B., King, L., Applegate, D., and McCarthy, I.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
For more than two decades, the Navarro, Frenk, and White (NFW) model has stood the test of time; it has been used to describe the distribution of mass in galaxy clusters out to their outskirts. Stacked weak lensing measurements of clusters are now revealing the distribution of mass out to and beyond their virial radii, where the NFW model is no longer applicable. In this study we assess how well the parameterised Diemer & Kravstov (DK) density profile describes the characteristic mass distribution of galaxy clusters extracted from cosmological simulations. This is determined from stacked synthetic lensing measurements of the 50 most massive clusters extracted from the Cosmo-OWLS simulations, using the Dark Matter Only run and also the run that most closely matches observations. The characteristics of the data reflect the Weighing the Giants survey and data from the future Large Synoptic Survey Telescope (LSST). In comparison with the NFW model, the DK model favored by the stacked data, in particular for the future LSST data, where the number density of background galaxies is higher. The DK profile depends on the accretion history of clusters which is specified in the current study. Eventually however subsamples of galaxy clusters with qualities indicative of disparate accretion histories could be studied., Comment: 15 pages, 14 figures, Monthly Notices of the Royal Astronomical Society accepted 17-May-2018
- Published
- 2018
- Full Text
- View/download PDF
28. The relative impact of baryons and cluster shape on weak lensing mass estimates of galaxy clusters
- Author
-
Lee, B. E., Brun, A. M. C. Le, Haq, M. E., Deering, N. J., King, L. J., Applegate, D., and McCarthy, I. G.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Weak gravitational lensing depends on the integrated mass along the line of sight. Baryons contribute to the mass distribution of galaxy clusters and the resulting mass estimates from lensing analysis. We use the cosmo-OWLS suite of hydrodynamic simulations to investigate the impact of baryonic processes on the bias and scatter of weak lensing mass estimates of clusters. These estimates are obtained by fitting NFW profiles to mock data using MCMC techniques. In particular, we examine the difference in estimates between dark matter-only runs and those including various prescriptions for baryonic physics. We find no significant difference in the mass bias when baryonic physics is included, though the overall mass estimates are suppressed when feedback from AGN is included. For lowest-mass systems for which a reliable mass can be obtained ($M_{200} \approx 2 \times 10^{14}$ $M_{\odot}$), we find a bias of $\approx -10$ per cent. The magnitude of the bias tends to decrease for higher mass clusters, consistent with no bias for the most massive clusters which have masses comparable to those found in the CLASH and HFF samples. For the lowest mass clusters, the mass bias is particularly sensitive to the fit radii and the limits placed on the concentration prior, rendering reliable mass estimates difficult. The scatter in mass estimates between the dark matter-only and the various baryonic runs is less than between different projections of individual clusters, highlighting the importance of triaxiality., Comment: 11 pages, 6 figures. Accepted by Monthly Notices of the Royal Astronomical Society
- Published
- 2018
- Full Text
- View/download PDF
29. Beam-energy and centrality dependence of direct-photon emission from ultra-relativistic heavy-ion collisions
- Author
-
Adare, A., Afanasiev, S., Aidala, C., Ajitanand, N. N., Akiba, Y., Akimoto, R., Al-Bataineh, H., Alexander, J., Alfred, M., Al-Jamel, A., Al-Ta'ani, H., Angerami, A., Aoki, K., Apadula, N., Aphecetche, L., Aramaki, Y., Armendariz, R., Aronson, S. H., Asai, J., Asano, H., Aschenauer, E. C., Atomssa, E. T., Averbeck, R., Awes, T. C., Azmoun, B., Babintsev, V., Bagoly, A., Bai, M., Baksay, G., Baksay, L., Baldisseri, A., Bannier, B., Barish, K. N., Barnes, P. D., Bassalleck, B., Basye, A. T., Bathe, S., Batsouli, S., Baublis, V., Bauer, F., Baumann, C., Baumgart, S., Bazilevsky, A., Belikov, S., Belmont, R., Bennett, R., Berdnikov, A., Berdnikov, Y., Bhom, J. H., Bickley, A. A., Bjorndal, M. T., Blau, D. S., Boer, M., Boissevain, J. G., Bok, J. S., Borel, H., Boyle, K., Brooks, M. L., Brown, D. S., Bryslawskyj, J., Bucher, D., Buesching, H., Bumazhnov, V., Bunce, G., Burward-Hoy, J. M., Butsyk, S., Camacho, C. M., Campbell, S., Roman, V. Canoa, Caringi, A., Castera, P., Chai, J. -S., Chang, B. S., Chang, W. C., Charvet, J. -L., Chen, C. -H., Chernichenko, S., Chi, C. Y., Chiba, J., Chiu, M., Choi, I. J., Choi, J. B., Choi, S., Choudhury, R. K., Christiansen, P., Chujo, T., Chung, P., Churyn, A., Chvala, O., Cianciolo, V., Citron, Z., Cleven, C. R., Cobigo, Y., Cole, B. A., Comets, M. P., del Valle, Z. Conesa, Connors, M., Constantin, P., Csanád, M., Csörgö, T., Dahms, T., Dairaku, S., Danchev, I., Danley, T. W., Das, K., Datta, A., Daugherity, M. S., David, G., Dayananda, M. K., Deaton, M. B., Dehmelt, K., Delagrange, H., Denisov, A., d'Enterria, D., Deshpande, A., Desmond, E. J., Dharmawardane, K. V., Dietzsch, O., Ding, L., Dion, A., Do, J. H., Donadelli, M., D'Orazio, L., Drachenberg, J. L., Drapier, O., Drees, A., Drees, K. A., Dubey, A. K., Durham, J. M., Durum, A., Dutta, D., Dzhordzhadze, V., Edwards, S., Efremenko, Y. V., Egdemir, J., Ellinghaus, F., Emam, W. S., Engelmore, T., Enokizono, A., En'yo, H., Espagnon, B., Esumi, S., Eyser, K. O., Fadem, B., Fan, W., Feege, N., Fields, D. E., Finger, M., Finger, Jr., M., Fleuret, F., Fokin, S. L., Forestier, B., Fraenkel, Z., Frantz, J. E., Franz, A., Frawley, A. D., Fujiwara, K., Fukao, Y., Fung, S. -Y., Fusayasu, T., Gadrat, S., Gainey, K., Gal, C., Gallus, P., Garg, P., Garishvili, A., Garishvili, I., Gastineau, F., Ge, H., Germain, M., Glenn, A., Gong, H., Gong, X., Gonin, M., Gosset, J., Goto, Y., de Cassagnac, R. Granier, Grau, N., Greene, S. V., Grim, G., Perdekamp, M. Grosse, Gunji, T., Guo, L., Gustafsson, H. Å., Hachiya, T., Henni, A. Hadj, Haegemann, C., Haggerty, J. S., Hagiwara, M. N., Hahn, K. I., Hamagaki, H., Hamblen, J., Han, R., Hanks, J., Harada, H., Hartouni, E. P., Haruna, K., Harvey, M., Hasegawa, S., Haseler, T. O. S., Hashimoto, K., Haslum, E., Hasuko, K., Hayano, R., He, X., Heffner, M., Hemmick, T. K., Hester, T., Heuser, J. M., Hiejima, H., Hill, J. C., Hill, K., Hobbs, R., Hodges, A., Hohlmann, M., Hollis, R. S., Holmes, M., Holzmann, W., Homma, K., Hong, B., Horaguchi, T., Hori, Y., Hornback, D., Hotvedt, N., Huang, J., Huang, S., Hur, M. G., Ichihara, T., Ichimiya, R., Iinuma, H., Ikeda, Y., Imai, K., Imrek, J., Inaba, M., Inoue, Y., Iordanova, A., Isenhower, D., Isenhower, L., Ishihara, M., Isobe, T., Issah, M., Isupov, A., Ivanishchev, D., Iwanaga, Y., Jacak, B. V., Javani, M., Ji, Z., Jia, J., Jiang, X., Jin, J., Jinnouchi, O., Johnson, B. M., Jones, T., Joo, K. S., Jouan, D., Jumper, D. S., Kajihara, F., Kametani, S., Kamihara, N., Kamin, J., Kaneta, M., Kaneti, S., Kang, B. H., Kang, J. H., Kang, J. S., Kanou, H., Kapustinsky, J., Karatsu, K., Kasai, M., Kawagishi, T., Kawall, D., Kawashima, M., Kazantsev, A. V., Kelly, S., Kempel, T., Khachatryan, V., Khanzadeev, A., Kijima, K. M., Kikuchi, J., Kim, A., Kim, B. I., Kim, C., Kim, D. H., Kim, D. J., Kim, E., Kim, E. -J., Kim, H. J., Kim, K. -B., Kim, M., Kim, S. H., Kim, Y. -J., Kim, Y. K., Kim, Y. -S., Kincses, D., Kinney, E., Kiriluk, K., Kiss, Á., Kistenev, E., Kiyomichi, A., Klatsky, J., Klay, J., Klein-Boesing, C., Kleinjan, D., Kline, P., Kochenda, L., Kochetkov, V., Komatsu, Y., Komkov, B., Konno, M., Koster, J., Kotchetkov, D., Kotov, D., Kozlov, A., Král, A., Kravitz, A., Krizek, F., Kroon, P. J., Kubart, J., Kunde, G. J., Kurgyis, B., Kurihara, N., Kurita, K., Kurosawa, M., Kweon, M. J., Kwon, Y., Kyle, G. S., Lacey, R., Lai, Y. S., Lajoie, J. G., Layton, D., Lebedev, A., Bornec, Y. Le, Leckey, S., Lee, B., Lee, D. M., Lee, J., Lee, K. B., Lee, K. S., Lee, M. K., Lee, S. H., Lee, S. R., Lee, T., Leitch, M. J., Leite, M. A. L., Leitgab, M., Lenzi, B., Leung, Y. H., Lewis, B., Lewis, N. A., Li, X., Li, X. H., Lichtenwalner, P., Liebing, P., Lim, H., Lim, S. H., Levy, L. A. Linden, Liška, T., Litvinenko, A., Liu, H., Liu, M. X., Lökös, S., Love, B., Lynch, D., Maguire, C. F., Majoros, T., Makdisi, Y. I., Makek, M., Malakhov, A., Malik, M. D., Manion, A., Manko, V. I., Mannel, E., Mao, Y., Mašek, L., Masui, H., Masumoto, S., Matathias, F., McCain, M. C., McCumber, M., McGaughey, P. L., McGlinchey, D., McKinney, C., Means, N., Mendoza, M., Meredith, B., Miake, Y., Mibe, T., Mignerey, A. C., Mihalik, D. E., Mikeš, P., Miki, K., Miller, T. E., Milov, A., Mioduszewski, S., Mishra, D. K., Mishra, G. C., Mishra, M., Mitchell, J. T., Mitrovski, M., Mitsuka, G., Miyachi, Y., Miyasaka, S., Mohanty, A. K., Mohapatra, S., Moon, H. J., Moon, T., Morino, Y., Morreale, A., Morrison, D. P., Morrow, S. I., Moss, J. M., Motschwiller, S., Moukhanova, T. V., Mukhopadhyay, D., Murakami, T., Murata, J., Mwai, A., Nagae, T., Nagamiya, S., Nagashima, K., Nagata, Y., Nagle, J. L., Naglis, M., Nagy, M. I., Nakagawa, I., Nakamiya, Y., Nakamura, K. R., Nakamura, T., Nakano, K., Nam, S., Nattrass, C., Nederlof, A., Newby, J., Nguyen, M., Nihashi, M., Niida, T., Norman, B. E., Nouicer, R., Novák, T., Novitzky, N., Nyanin, A. S., Nystrand, J., Oakley, C., O'Brien, E., Oda, S. X., Ogilvie, C. A., Ohnishi, H., Ojha, I. D., Oka, M., Okada, K., Omiwade, O. O., Onuki, Y., Koop, J. D. Orjuela, Osborn, J. D., Oskarsson, A., Otterlund, I., Ouchida, M., Ozawa, K., Pak, R., Pal, D., Palounek, A. P. T., Pantuev, V., Papavassiliou, V., Park, B. H., Park, I. H., Park, J., Park, S., Park, S. K., Park, W. J., Pate, S. F., Patel, L., Patel, M., Pei, H., Peng, J. -C., Peng, W., Pereira, H., Perepelitsa, D. V., Peresedov, V., Peressounko, D. Yu., PerezLara, C. E., Petti, R., Pinkenburg, C., Pisani, R. P., Proissl, M., Purschke, M. L., Purwar, A. K., Qu, H., Radzevich, P. V., Rak, J., Rakotozafindrabe, A., Ravinovich, I., Read, K. F., Rembeczki, S., Reuter, M., Reygers, K., Reynolds, D., Riabov, V., Riabov, Y., Richardson, E., Richford, D., Rinn, T., Roach, D., Roche, G., Rolnick, S. D., Romana, A., Rosati, M., Rosen, C. A., Rosendahl, S. S. E., Rosnet, P., Rowan, Z., Rukoyatkin, P., Runchey, J., Ružička, P., Rykov, V. L., Ryu, S. S., Sahlmueller, B., Saito, N., Sakaguchi, T., Sakai, S., Sakashita, K., Sakata, H., Sako, H., Samsonov, V., Sano, M., Sano, S., Sarsour, M., Sato, H. D., Sato, S., Sato, T., Sawada, S., Schmoll, B. K., Sedgwick, K., Seele, J., Seidl, R., Semenov, A. Yu., Semenov, V., Sen, A., Seto, R., Sharma, D., Shea, T. K., Shein, I., Shevel, A., Shibata, T. -A., Shigaki, K., Shimomura, M., Shohjoh, T., Shoji, K., Shukla, P., Sickles, A., Silva, C. L., Silvermyr, D., Silvestre, C., Sim, K. S., Singh, B. K., Singh, C. P., Singh, V., Skoby, M. J., Skutnik, S., Slunečka, M., Smith, W. C., Soldatov, A., Soltz, R. A., Sondheim, W. E., Sorensen, S. P., Sourikova, I. V., Staley, F., Stankus, P. W., Stenlund, E., Stepanov, M., Ster, A., Stoll, S. P., Sugitate, T., Suire, C., Sukhanov, A., Sullivan, J. P., Sun, J., Sun, Z., Sziklai, J., Tabaru, T., Takagi, S., Takagui, E. M., Takahara, A., Taketani, A., Tanabe, R., Tanaka, K. H., Tanaka, Y., Taneja, S., Tanida, K., Tannenbaum, M. J., Tarafdar, S., Taranenko, A., Tarján, P., Tennant, E., Themann, H., Thomas, D., Thomas, T. L., Tieulent, R., Todoroki, T., Togawa, M., Toia, A., Tojo, J., Tomášek, L., Tomášek, M., Tomita, Y., Torii, H., Towell, R. S., Tram, V-N., Tserruya, I., Tsuchimoto, Y., Tsuji, T., Tuli, S. K., Tydesjö, H., Tyurin, N., Ueda, Y., Ujvari, B., Vale, C., Valle, H., van Hecke, H. W., Vargyas, M., Vazquez-Zambrano, E., Veicht, A., Velkovska, J., Vértesi, R., Vinogradov, A. A., Virius, M., Vossen, A., Vrba, V., Vznuzdaev, E., Wagner, M., Walker, D., Wang, X. R., Watanabe, D., Watanabe, K., Watanabe, Y., Watanabe, Y. S., Wei, F., Wei, R., Wessels, J., White, S. N., Willis, N., Winter, D., Wolin, S., Wong, C. P., Woody, C. L., Wright, R. M., Wysocki, M., Xia, B., Xie, W., Xu, C., Xu, Q., Yamaguchi, Y. L., Yamaura, K., Yang, R., Yanovich, A., Yasin, Z., Ying, J., Yokkaichi, S., Yoo, J. H., You, Z., Young, G. R., Younus, I., Yu, H., Yushmanov, I. E., Zajc, W. A., Zaudtke, O., Zelenski, A., Zhang, C., Zharko, S., Zhou, S., Zimamyi, J., Zolin, L., and Zou, L.
- Subjects
High Energy Physics - Experiment ,Nuclear Experiment - Abstract
The PHENIX collaboration presents first measurements of low-momentum ($0.4
$1\,GeV/$c$) direct-photon yield $dN_{\gamma}^{\rm dir}/d\eta$ is a smooth function of $dN_{\rm ch}/d\eta$ and can be well described as proportional to $(dN_{\rm ch}/d\eta)^\alpha$ with $\alpha{\approx}1.25$. This scaling behavior holds for a wide range of beam energies at the Relativistic Heavy Ion Collider and the Large Hadron Collider, for centrality selected samples, as well as for different, $A$$+$$A$ collision systems. At a given beam energy the scaling also holds for high $p_T$ ($>5$\,GeV/$c$) but when results from different collision energies are compared, an additional $\sqrt{s_{_{NN}}}$-dependent multiplicative factor is needed to describe the integrated-direct-photon yield., Comment: 673 authors from 82 institutions, 10 pages, 4 figures. v2 is version accepted for publication in Physical Review Letters. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.html - Published
- 2018
- Full Text
- View/download PDF
30. Probing the $N = 14$ subshell closure: $g$ factor of the $^{26}$Mg(2$^+_1$) state
- Author
-
McCormick, B. P., Stuchbery, A. E., Kibédi, T., Lane, G. J., Reed, M. W., Eriksen, T. K., Hota, S. S., Lee, B. Q., and Palalani, N.
- Subjects
Nuclear Experiment - Abstract
The first-excited state $g$~factor of $^{26}$Mg has been measured relative to the $g$ factor of the $^{24}$Mg($2^+_1$) state using the high-velocity transient-field technique, giving $g=+0.86\pm0.10$. This new measurement is in strong disagreement with the currently adopted value, but in agreement with the $sd$-shell model using the USDB interaction. The newly measured $g$ factor, along with $E(2^+_1)$ and $B(E2)$ systematics, signal the closure of the $\nu d_{5/2}$ subshell at $N=14$. The possibility that precise $g$-factor measurements may indicate the onset of neutron $pf$ admixtures in first-excited state even-even magnesium isotopes below $^{32}$Mg is discussed and the importance of precise excited-state $g$-factor measurements on $sd$~shell nuclei with $N\neq Z$ to test shell-model wavefunctions is noted., Comment: 8 pages, 5 figures
- Published
- 2018
- Full Text
- View/download PDF
31. Identification of significant $E0$ strength in the $2^+_2 \rightarrow 2^+_1$ transitions of $^{58, 60, 62}$Ni
- Author
-
Evitts, L. J., Garnsworthy, A. B., Kibédi, T., Smallcombe, J., Reed, M. W., Brown, B. A., Stuchbery, A. E., Lane, G. J., Eriksen, T. K., Akber, A., Alshahrani, B., de Vries, M., Gerathy, M. S. M., Holt, J. D., Lee, B. Q., McCormick, B. P., Mitchell, A. J., Moukaddam, M., Mukhopadhyay, S., Palalani, N., Palazzo, T., Peters, E. E., Ramirez, A. P. D., Stroberg, S. R., Tornyi, T., and Yates, S. W.
- Subjects
Nuclear Experiment ,Nuclear Theory - Abstract
The $E0$ transition strength in the $2^+_2 \rightarrow 2^+_1$ transitions of $^{58,60,62}$Ni have been determined for the first time following a series of measurements at the Australian National University (ANU) and the University of Kentucky (UK). The CAESAR Compton-suppressed HPGe array and the Super-e solenoid at ANU were used to measure the $\delta(E2/M1)$ mixing ratio and internal conversion coefficient of each transition following inelastic proton scattering. Level half-lives, $\delta(E2/M1)$ mixing ratios and $\gamma$-ray branching ratios were measured at UK following inelastic neutron scattering. The new spectroscopic information was used to determine the $E0$ strengths. These are the first $2^+ \rightarrow 2^+$ $E0$ transition strengths measured in nuclei with spherical ground states and the $E0$ component is found to be unexpectedly large; in fact, these are amongst the largest $E0$ transition strengths in medium and heavy nuclei reported to date.
- Published
- 2018
- Full Text
- View/download PDF
32. Measurement of the intensity ratio of Auger and conversion electrons for the electron capture decay of $^{125}$I
- Author
-
Alotiby, M., Greguric, I., Kibédi, T., Lee, B. Q., Roberts, M., Stuchbery, A. E., Tee, Pi, Tornyi, T., and Vos, M.
- Subjects
Nuclear Experiment ,Physics - Medical Physics - Abstract
Auger electrons emitted after nuclear decay have potential application in targeted cancer therapy. For this purpose it is important to know the Auger electron yield per nuclear decay. In this work we describe a measurement of the ratio of the number of conversion electrons (emitted as part of the nuclear decay process) to the number of Auger electrons (emitted as part of the atomic relaxation process after the nuclear decay) for the case of $^{125}$I. Results are compared with Monte-Carlo type simulations of the relaxation cascade using the BrIccEmis code. Our results indicate that for $^{125}$I the calculations based on rates from the Evaluated Atomic Data Library (EADL) underestimate the K Auger yields by 20\%., Comment: 9 pages 2 fugures
- Published
- 2018
- Full Text
- View/download PDF
33. High-spin spectroscopy and shell-model interpretation of the N < 126 radium isotopes $^{212}$Ra and $^{213}$Ra
- Author
-
Palazzo, T., Lane, G. J., Stuchbery, A. E., Mitchell, A. J., Akber, A., Gerathy, M. S. M., Hota, S. S., Kibédi, T., Lee, B. Q., Palalani, N., and Reed, M. W.
- Subjects
Nuclear Experiment - Abstract
The level structures of $^{212}$Ra and $^{213}$Ra have been established via time-correlated $\gamma$-ray spectroscopy following the $^{204}$Pb($^{12}$C,4$n$)$^{212}$Ra and $^{204}$Pb($^{13}$C,4$n$)$^{213}$Ra reactions. In $^{212}$Ra, levels up to $\sim 6.2$ MeV were identified and firm spin-parity assignments were achieved to a $J^{\pi} = 19^+$ isomer with a mean life of 31(3) ns. For $^{213}$Ra the corresponding values were $\sim 4.5$ MeV in excitation energy and $J^{\pi} = 33/2^+$. Two isomeric states with $J^\pi = 23/2^+$, $\tau = 27(3)$ ns and $J^\pi = 33/2^+$, $\tau = 50(3)$ ns were discovered in $^{213}$Ra. The experimental data were compared with semiempirical shell-model calculations, which allowed dominant configurations to be assigned to most of the observed levels., Comment: 22 pages, 12 figures
- Published
- 2018
- Full Text
- View/download PDF
34. The Radial Velocity Variability of the K-giant Gamma Draconis: Stellar Variability Masquerading as a Planet
- Author
-
Hatzes, A. P., Endl, M., Cochran, W. D., MacQueen, P. J., Han, I., Lee, B. -C., Kim, K. -M., Mkrtichian, D., Doellinger, M., Hartmann, M., Karjalainen, M., and Dreizler, S.
- Subjects
Astrophysics - Solar and Stellar Astrophysics - Abstract
We present precise stellar radial velocity measurements of Gamma Dra taken from 2003 to 2017. The data from 2003 to 2011 show coherent, long-lived variations with a period of 702 d. These variations are consistent with the presence of a planetary companion having m sin i = 10.7 M_Jup whose orbital properties are typical for giant planets found around evolved stars. An analysis of the Hipparcos photometry, Ca II S-index measurements, and measurements of the spectral line shapes during this time show no variations with the radial velocity of the planet which seems to "confirm"' the presence of the planet. However, radial velocity measurements taken 2011 -- 2017 seem to refute this. From 2011 to 2013 the radial velocity variations virtually disappear only to return in 2014, but with a noticeable phase shift. The total radial velocity variations are consistent either with amplitude variations on timescales of ~ 10.6 yr, or the beating effect between two periods of 666 d and 801 d. It seems unlikely that both these signals stem from a two-planet system. A simple dynamical analysis indicates that there is only a 1-2 % chance that the two-planet is stable. Rather, we suggest that this multi-periodic behavior may represent a new form of stellar variability, possibly related to oscillatory convective modes. If such intrinsic stellar variability is common around K giant stars and is attributed to planetary companions, then the planet occurrence rate among these stars may be significantly lower than thought., Comment: 37 pages, 9 figures. Accepted for publication in The Astronomical Journal
- Published
- 2018
- Full Text
- View/download PDF
35. L\'evy-stable two-pion Bose-Einstein correlations in $\sqrt{s_{_{NN}}}=200$ GeV Au$+$Au collisions
- Author
-
Adare, A., Aidala, C., Ajitanand, N. N., Akiba, Y., Akimoto, R., Alexander, J., Alfred, M., Al-Ta'ani, H., Angerami, A., Aoki, K., Apadula, N., Aramaki, Y., Asano, H., Aschenauer, E. C., Atomssa, E. T., Awes, T. C., Azmoun, B., Babintsev, V., Bagoly, A., Bai, M., Bannier, B., Barish, K. N., Bassalleck, B., Bathe, S., Baublis, V., Baumgart, S., Bazilevsky, A., Belmont, R., Berdnikov, A., Berdnikov, Y., Blau, D. S., Bok, J. S., Boyle, K., Brooks, M. L., Bryslawskyj, J., Buesching, H., Bumazhnov, V., Butsyk, S., Campbell, S., Roman, V. Canoa, Castera, P., Chen, C. -H., Chi, C. Y., Chiu, M., Choi, I. J., Choi, J. B., Choi, S., Choudhury, R. K., Christiansen, P., Chujo, T., Chvala, O., Cianciolo, V., Citron, Z., Cole, B. A., Connors, M., Csanád, M., Csörgő, T., Dairaku, S., Danley, T. W., Datta, A., Daugherity, M. S., David, G., DeBlasio, K., Dehmelt, K., Denisov, A., Deshpande, A., Desmond, E. J., Dharmawardane, K. V., Dietzsch, O., Ding, L., Dion, A., Do, J. H., Donadelli, M., D'Orazio, L., Drapier, O., Drees, A., Drees, K. A., Durham, J. M., Durum, A., Edwards, S., Efremenko, Y. V., Engelmore, T., Enokizono, A., Esumi, S., Eyser, K. O., Fadem, B., Fan, W., Feege, N., Fields, D. E., Finger, M., Finger, Jr., M., Fleuret, F., Fokin, S. L., Frantz, J. E., Franz, A., Frawley, A. D., Fukao, Y., Fukuda, Y., Fusayasu, T., Gainey, K., Gal, C., Garg, P., Garishvili, A., Garishvili, I., Ge, H., Glenn, A., Gong, X., Gonin, M., Goto, Y., de Cassagnac, R. Granier, Grau, N., Greene, S. V., Perdekamp, M. Grosse, Gunji, T., Guo, L., Gustafsson, H. -Å., Hachiya, T., Haggerty, J. S., Hahn, K. I., Hamagaki, H., Han, S. Y., Hanks, J., Hasegawa, S., Haseler, T. O. S., Hashimoto, K., Haslum, E., Hayano, R., He, X., Hemmick, T. K., Hester, T., Hill, J. C., Hill, K., Hodges, A., Hollis, R. S., Homma, K., Hong, B., Horaguchi, T., Hori, Y., Hoshino, T., Hotvedt, N., Huang, J., Huang, S., Ichihara, T., Iinuma, H., Ikeda, Y., Imrek, J., Inaba, M., Iordanova, A., Isenhower, D., Issah, M., Ivanishchev, D., Jacak, B. V., Javani, M., Ji, Z., Jia, J., Jiang, X., Johnson, B. M., Joo, K. S., Jorjadze, V., Jouan, D., Jumper, D. S., Kamin, J., Kaneti, S., Kang, B. H., Kang, J. H., Kang, J. S., Kapustinsky, J., Karatsu, K., Karthas, S., Kasai, M., Kawall, D., Kazantsev, A. V., Kempel, T., Khachatryan, V., Khanzadeev, A., Kijima, K. M., Kim, B. I., Kim, C., Kim, D. J., Kim, E. -J., Kim, H. J., Kim, K. -B., Kim, M., Kim, M. H., Kim, Y. -J., Kim, Y. K., Kincses, D., Kinney, E., Kiss, Á., Kistenev, E., Klatsky, J., Kleinjan, D., Kline, P., Koblesky, T., Komatsu, Y., Komkov, B., Koster, J., Kotchetkov, D., Kotov, D., Král, A., Krizek, F., Kudo, S., Kunde, G. J., Kurita, K., Kurosawa, M., Kwon, Y., Kyle, G. S., Lacey, R., Lai, Y. S., Lajoie, J. G., Lebedev, A., Lee, B., Lee, D. M., Lee, J., Lee, K. B., Lee, K. S., Lee, S. H., Lee, S. R., Leitch, M. J., Leite, M. A. L., Leitgab, M., Leung, Y. H., Lewis, B., Lewis, N. A., Li, X., Lim, S. H., Levy, L. A. Linden, Liu, M. X., Lokos, S., Love, B., Lynch, D., Maguire, C. F., Makdisi, Y. I., Makek, M., Manion, A., Manko, V. I., Mannel, E., Masuda, H., Masumoto, S., McCumber, M., McGaughey, P. L., McGlinchey, D., McKinney, C., Mendoza, M., Meredith, B., Metzger, W. J., Miake, Y., Mibe, T., Mignerey, A. C., Mihalik, D. E., Milov, A., Mishra, D. K., Mitchell, J. T., Mitsuka, G., Miyachi, Y., Miyasaka, S., Mohanty, A. K., Mohapatra, S., Moon, H. J., Moon, T., Morrison, D. P., Morrow, S. I. M., Motschwiller, S., Moukhanova, T. V., Murakami, T., Murata, J., Mwai, A., Nagae, T., Nagai, K., Nagamiya, S., Nagashima, K., Nagle, J. L., Nagy, M. I., Nakagawa, I., Nakagomi, H., Nakamiya, Y., Nakamura, K. R., Nakamura, T., Nakano, K., Nattrass, C., Nederlof, A., Nihashi, M., Nouicer, R., Novák, T., Novitzky, N., Nyanin, A. S., O'Brien, E., Ogilvie, C. A., Okada, K., Koop, J. D. Orjuela, Osborn, J. D., Oskarsson, A., Ouchida, M., Ozawa, K., Pak, R., Pantuev, V., Papavassiliou, V., Park, B. H., Park, I. H., Park, J. S., Park, S., Park, S. K., Pate, S. F., Patel, L., Pei, H., Peng, J. -C., Peng, W., Pereira, H., Perepelitsa, D. V., Perera, G. D. N., Peressounko, D. Yu., PerezLara, C. E., Petti, R., Pinkenburg, C., Pisani, R. P., Proissl, M., Pun, A., Purschke, M. L., Qu, H., Radzevich, P. V., Rak, J., Ravinovich, I., Read, K. F., Reynolds, D., Riabov, V., Riabov, Y., Richardson, E., Richford, D., Rinn, T., Roach, D., Roche, G., Rolnick, S. D., Rosati, M., Rowan, Z., Runchey, J., Sahlmueller, B., Saito, N., Sakaguchi, T., Sako, H., Samsonov, V., Sano, M., Sarsour, M., Sato, K., Sato, S., Sawada, S., Schmoll, B. K., Sedgwick, K., Seidl, R., Sen, A., Seto, R., Sexton, A., Sharma, D., Shein, I., Shibata, T. -A., Shigaki, K., Shimomura, M., Shoji, K., Shukla, P., Sickles, A., Silva, C. L., Silvermyr, D., Sim, K. S., Singh, B. K., Singh, C. P., Singh, V., Skoby, M. J., Slunečka, M., Soltz, R. A., Sondheim, W. E., Sorensen, S. P., Sourikova, I. V., Stankus, P. W., Stenlund, E., Stepanov, M., Ster, A., Stoll, S. P., Sugitate, T., Sukhanov, A., Sun, J., Sziklai, J., Takagui, E. M., Takahara, A., Takeda, A, Taketani, A., Tanaka, Y., Taneja, S., Tanida, K., Tannenbaum, M. J., Tarafdar, S., Taranenko, A., Tarnai, G., Tennant, E., Themann, H., Timilsina, A., Todoroki, T., Tomášek, L., Tomášek, M., Torii, H., Towell, C. L., Towell, R. S., Tserruya, I., Tsuchimoto, Y., Tsuji, T., Ueda, Y., Vale, C., van Hecke, H. W., Vargyas, M., Vazquez-Carson, S., Vazquez-Zambrano, E., Veicht, A., Velkovska, J., Vértesi, R., Virius, M., Vossen, A., Vrba, V., Vznuzdaev, E., Wang, X. R., Wang, Z., Watanabe, D., Watanabe, K., Watanabe, Y., Watanabe, Y. S., Wei, F., Wei, R., White, S. N., Winter, D., Wolin, S., Woody, C. L., Wysocki, M., Xia, B., Xu, C., Xu, Q., Yamaguchi, Y. L., Yang, R., Yanovich, A., Yin, P., Ying, J., Yokkaichi, S., Yoo, J. H., You, Z., Younus, I., Yu, H., Yushmanov, I. E., Zajc, W. A., Zelenski, A., Zharko, S., and Zou, L.
- Subjects
Nuclear Experiment - Abstract
We present a detailed measurement of charged two-pion correlation functions in 0%-30% centrality $\sqrt{s_{_{NN}}}=200$ GeV Au$+$Au collisions by the PHENIX experiment at the Relativistic Heavy Ion Collider. The data are well described by Bose-Einstein correlation functions stemming from L\'evy-stable source distributions. Using a fine transverse momentum binning, we extract the correlation strength parameter $\lambda$, the L\'evy index of stability $\alpha$ and the L\'evy length scale parameter $R$ as a function of average transverse mass of the pair $m_T$. We find that the positively and the negatively charged pion pairs yield consistent results, and their correlation functions are represented, within uncertainties, by the same L\'evy-stable source functions. The $\lambda(m_T)$ measurements indicate a decrease of the strength of the correlations at low $m_T$. The L\'evy length scale parameter $R(m_T)$ decreases with increasing $m_T$, following a hydrodynamically predicted type of scaling behavior. The values of the L\'evy index of stability $\alpha$ are found to be significantly lower than the Gaussian case of $\alpha=2$, but also significantly larger than the conjectured value that may characterize the critical point of a second-order quark-hadron phase transition., Comment: 448 authors, 25 pages, 11 figures, 4 tables, 2010 data. v3 is version accepted for publication in Phys. Rev. C with some Table II numbers and Fig. 5 updated to match publication. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.html
- Published
- 2017
- Full Text
- View/download PDF
36. Stochastic modeling of multiwavelength variability of the classical BL Lac object OJ 287 on timescales ranging from decades to hours
- Author
-
Goyal, A., Stawarz, L., Zola, S., Marchenko, V., Soida, M., Nilsson, K., Ciprini, S., Baran, A., Ostrowski, M., Wiita, P. J., Gopal-Krishna, Siemiginowska, A., Sobolewska, M., Jorstad, S., Marscher, A., Hovatta, M. F. Aller H. D. Aller T., Caton, D. B., Reichart, D., Matsumoto, K., Sadakane, K., Gazeas, K., Kidger, M., Piirola, V., Jermak, H., Alicavus, F., Baliyan, K. S., Baransky, A., Berdyugin, A., Blay, P., Boumis, P., Boyd, D., Bufan, Y., Torrent, M. Campas, Campos, F., Gomez, J. Carrillo, Dalessio, J., Debski, B., Dimitrov, D., Drozdz, M., Er, H., Erdem, A., Perez, A. Escartin, Ramazani, V. Fallah, Filippenko, A. V., Gafton, E., Garcia, F., Godunova, V., Pinilla, F. Gomez, Gopinathan, M., Haislip, J. B., Haque, S., Harmanen, J., Hudec, R., Hurst, G., Ivarsen, K. M., Joshi, A., Kagitani, M., Karaman, N., Karjalainen, R., Kaur, N., l-Wierzbowska, D. Kozie, Kuligowska, E., Kundera, T., Kurowski, S., Kvammen, A., LaCluyze, A. P., Lee, B. C., Liakos, A., de Haro, J. Lozano, Mohammed, I., Moore, J. P., Mugrauer, M., Nogues, R. Naves, Neely, A. W., Ogloza, W., Okano, S., Pajdosz, U., Pandey, J. C., Perri, M., Poyner, G., Provencal, J., Pursimo, T., Raj, A., Rajkumar, B., Reinthal, R., Reynolds, T., Saario, J., Sadegi, S., Sakanoi, T., Gonzalez, J. L. Salto, Sameer, Heung, A., Simon, O., Siwak, M., Schweyer, T., Alfaro, F. C. Soldan, Sonbas, E., Strobl, J., Takalo, L. O., Espasa, L. Tremosa, Valdes, J. R., Vasylenko, V. V., Verrecchia, F., Webb, J. R., Yoneda, M., Zejmo, M., Zheng, W., Zielinski, P., Janik, J., Chavushyan, V., Cheung, C. C., and Giroletti, M.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present the results of our power spectral density analysis for the BL Lac object OJ\,287, utilizing the {\it Fermi}-LAT survey at high-energy $\gamma$-rays, {\it Swift}-XRT in X-rays, several ground-based telescopes and the {\it Kepler} satellite in the optical, and radio telescopes at GHz frequencies. The light curves are modeled in terms of continuous-time auto-regressive moving average (CARMA) processes. Owing to the inclusion of the {\it Kepler} data, we were able to construct \emph{for the first time} the optical variability power spectrum of a blazar without any gaps across $\sim6$ dex in temporal frequencies. Our analysis reveals that the radio power spectra are of a colored-noise type on timescales ranging from tens of years down to months, with no evidence for breaks or other spectral features. The overall optical power spectrum is also consistent with a colored noise on the variability timescales ranging from 117 years down to hours, with no hints of any quasi-periodic oscillations. The X-ray power spectrum resembles the radio and optical power spectra on the analogous timescales ranging from tens of years down to months. Finally, the $\gamma$-ray power spectrum is noticeably different from the radio, optical, and X-ray power spectra of the source: we have detected a characteristic relaxation timescale in the {\it Fermi}-LAT data, corresponding to $\sim 150$\,days, such that on timescales longer than this, the power spectrum is consistent with uncorrelated (white) noise, while on shorter variability timescales there is correlated (colored) noise., Comment: ApJ accepted
- Published
- 2017
- Full Text
- View/download PDF
37. Theory of d-wave high temperature superconductivity in the cuprates involving non-linear lattice modes
- Author
-
Lee, B. S., Yoon, T. L., and Abd-Shukor, R.
- Subjects
Condensed Matter - Superconductivity - Abstract
The transition mechanism in high temperature cuprate superconductors is an outstanding puzzle. A previous suggestion on the role of non-linear local lattice instability modes on the microscopic pairing mechanism in high temperature cuprate superconductors \cite{Lee:JSNM09} is re-examined to provide a viable mechanism for superconductivity in these cuprates via an unusual lattice vibration in which an electron is predominantly interacting with a nonlinear $Q_2$ mode of the oxygen clusters in the CuO$_2$ planes. It is shown that the interaction has explicit d-wave symmetry and leads to an indirect coupling of d-wave symmetry between electrons. As a follow-up of \cite{Lee:JSNM09}, in this paper, we report detailed derivation of the superconducting gap equation and numerical solutions for the transition temperature as inherently integrated into the so-called Extended Hubbard Model (EHM). A unique feature in the EHM is that the transition temperature has an inherent k-dependence. In addition, superconducting gap solutions are restrained to specific regions in the first Brillouin zone (1BZ). It is very feasible to expect that the EHM naturally inherits a huge parameter space in which experimentally measured results, such as the well-known superconducting dome and the phase diagram from electronic Raman scattering \cite{Sacuto:RPP13} can be accommodated. The EHM model hence offers a viable venue to search for or confirm any signature in k-point-sensitive experimental measurements., Comment: Manuscript submitted to Journal of Superconductivity and Novel Magnetism
- Published
- 2017
38. CANDELS Multiwavelength Catalogs: Source Identification and Photometry in the CANDELS COSMOS Survey Field
- Author
-
Nayyeri, H., Hemmati, S., Mobasher, B., Ferguson, H. C., Cooray, A., Barro, G., Faber, S. M., Dickinson, M., Koekemoer, A. M., Peth, M., Salvato, M., Ashby, M. L. N., Darvish, B., Donley, J., Durbin, M., Finkelstein, S., Fontana, A., Grogin, N. A., Gruetzbauch, R., Huang, K., Khostovan, A. A., Kocevski, D., Kodra, D., Lee, B., Newman, J., Pacifici, C., Pforr, J., Stefanon, M., Wiklind, T., Willner, S. P., Wuyts, S., Castellano, M., Conselice, C., Dolch, T., Dunlop, J. S., Galametz, A., Hathi, N. P., Lucas, R. A., and Yan, H.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We present a multi-wavelength photometric catalog in the COSMOS field as part of the observations by the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). The catalog is based on Hubble Space Telescope Wide Field Camera 3 (HST/WFC3) and Advanced Camera for Surveys (ACS) observations of the COSMOS field (centered at RA: $10^h00^m28^s$, Dec:$+02^{\circ}12^{\prime}21^{\prime\prime}$). The final catalog has 38671 sources with photometric data in forty two bands from UV to the infrared ($\rm \sim 0.3-8\,\mu m$). This includes broad-band photometry from the HST, CFHT, Subaru, VISTA and Spitzer Space Telescope in the visible, near infrared and infrared bands along with intermediate and narrow-band photometry from Subaru and medium band data from Mayall NEWFIRM. Source detection was conducted in the WFC3 F160W band (at $\rm 1.6\,\mu m$) and photometry is generated using the Template FITting algorithm. We further present a catalog of the physical properties of sources as identified in the HST F160W band and measured from the multi-band photometry by fitting the observed spectral energy distributions of sources against templates., Comment: 28 Pages, 22 Figures and 10 Tables. Accepted for Publication in the ApJS
- Published
- 2016
- Full Text
- View/download PDF
39. JLab Measurements of the 3He Form Factors at Large Momentum Transfers
- Author
-
Camsonne, A., Katramatou, A. T., Olson, M., Acha, A., Allada, K., Anderson, B. D., Arrington, J., Baldwin, A., Chen, J. -P., Choi, S., Chudakov, E., Cisbani, E., Craver, B., Decowski, P., Dutta, C., Folts, E., Frullani, S., Garibaldi, F., Gilman, R., Gomez, J., Hahn, B., Hansen, J. -O., Higinbotham, D. W., Holmstrom, T., Huang, J., Iodice, M., Jiang, X., Kelleher, A., Khrosinkova, E., Kievsky, A., Kuchina, E., Kumbartzki, G., Lee, B., LeRose, J. J., Lindgren, R. A., Lott, G., Lu, H., Marcucci, L. E., Margaziotis, D. J., Markowitz, P., Marrone, S., Meekins, D., Meziani, Z. -E., Michaels, R., Moffit, B., Norum, B., Petratos, G. G., Puckett, A., Qian, X., Rondon, O., Saha, A., Sawatzky, B., Segal, J., Shabestari, M., Shahinyan, A., Solvignon, P., Sparveris, N., Subedi, R. R., Suleiman, R., Sulkosky, V., Urciuoli, G. M., Viviani, M., Wang, Y., Wojtsekhowski, B. B., Yan, X., Yao, H., Zhang, W. -M., Zheng, X., and Zhu, L.
- Subjects
Nuclear Experiment - Abstract
The charge and magnetic form factors, FC and FM, of 3He have been extracted in the kinematic range 25 fm-2 < Q2 < 61 fm-2 from elastic electron scattering by detecting 3He recoil nuclei and electrons in coincidence with the High Resolution Spectrometers of the Hall A Facility at Jefferson Lab. The measurements are indicative of a second diffraction minimum for the magnetic form factor, which was predicted in the Q2 range of this experiment, and of a continuing diffractive structure for the charge form factor. The data are in qualitative agreement with theoretical calculations based on realistic interactions and accurate methods to solve the three-body nuclear problem.
- Published
- 2016
- Full Text
- View/download PDF
40. Reinforced magnetic properties of Ni-doped BiFeO3 ceramic
- Author
-
Hwang, J. S., Yoo, Y. J., Kang, J. -H., Lee, K. H., Lee, B. W., Park, S. Y., and Lee, Y. P.
- Subjects
Condensed Matter - Materials Science ,Physics - Chemical Physics - Abstract
Multiferroic materials attract considerable interest because of the wide range of potential applications such as spintronic devices, data storage and sensors. As a strong candidate for the applications among the limited list of single-phase multiferroic materials, BiFeO3 (BFO) is a quite attractive material due to its multiferroic properties at room temperature (RT). However, BFO is widely known to have large leakage current and small spontaneous polarization due to the existence of crystalline defects such as oxygen vacancies. Furthermore, the magnetic moment of pure BFO is very weak owing to its antiferromagnetic nature. In this paper, the effects of Ni2+ substitution on the magnetic properties of bulk BFO have been investigated. BFO, and BiFe0.99Ni0.01O3, BiFe0.98Ni0.02O3 and BiFe0.97Ni0.03O3 (BFNO: Ni-doped BFO) ceramics were prepared by solid-state reaction and rapid sintering, and analyzed by structural and magnetic-property measurements. The leakage current density was measured at RT by using a standard ferroelectric tester. All the Ni-doped BFO exhibit the similar rhombohedral perovskite structure (R3c) to that of BFO. The magnetic properties of Ni-doped BFO are much enhanced with respect to BFO prepared at the same conditions, since the enhanced ferromagnetic interaction is caused by the Fe/Ni coupling.
- Published
- 2016
- Full Text
- View/download PDF
41. Soft X-ray Absorption Spectroscopy Study of Multiferroic Bi-substituted Ba(1-x)Bi(x)Ti(0.9)Fe(0.1)O(3)
- Author
-
Kim, Hyun Woo, Kim, D. H., Lee, Eunsook, Seong, Seungho, Kim, Deok Hyeon, Lee, B. W., Ko, Y., Kim, J. -Y., and Kang, J. -S.
- Subjects
Condensed Matter - Materials Science - Abstract
The electronic structures of multiferroic oxides of Ba(1-x)Bi(x)Ti(0.9)Fe(0.1)O(3) (0 < x < 0.12) have been investigated by employing photoemission spectroscopy and soft x-ray absorption spectroscopy (XAS). The measured Fe and Ti 2p XAS spectra show that Ti ions are in the Ti4+ states for all x and that Fe ions are Fe2+-Fe3+ mixed-valent for x > 0. The valence states of Fe ions are found to be nearly trivalent for x=0, and decreases with increasing x from being nearly trivalent (v(Fe)~ 3) for x=0 to v(Fe)~ 2.6 for x=0.12. The valence states of both Ti and Ba ions do not change for all x < 0.12. Based on the obtained valence states of Fe ions, the electronic and magnetic properties of Ba(1-x)Bi(x)Ti(0.9)Fe(0.1)O(3) are explored., Comment: 9 pages, 3 figures
- Published
- 2016
- Full Text
- View/download PDF
42. Interplay of charge density wave and multiband superconductivity in 2$H$-Pd$_x$TaSe$_2$
- Author
-
Bhoi, D., Khim, S., Nam, W., Lee, B. S., Kim, Chanhee, Jeon, B. -G., Min, B. H., Park, S., and Kim, Kee Hoon
- Subjects
Condensed Matter - Superconductivity ,Condensed Matter - Materials Science - Abstract
2$H$-TaSe$_2$ has been one of unique transition metal dichalcogenides exhibiting several phase transitions due to a delicate balance among competing electronic ground states. An unusual metallic state at high-$T$ is sequentially followed by an incommensurate charge density wave (ICDW) state at $\approx$ 122 K and a commensurate charge density wave (CCDW) state at $\approx$ 90 K, and superconductivity at $T_{\rm{C}}\sim$0.14 K. Upon systematic intercalation of Pd ions into TaSe$_2$, we find that CCDW order is destabilized more rapidly than ICDW to indicate a hidden quantum phase transition point at $x$$\sim$0.09-0.10. Moreover, $T_{\rm{C}}$ shows a dramatic enhancement up to 3.3 K at $x$ = 0.08, $\sim$24 times of $T_{\rm{C}}$ in 2$H$-TaSe$_2$, in proportional to the density of states $N(E_F)$. Investigations of upper critical fields $H_{c2}$ in single crystals reveal evidences of multiband superconductivity as temperature-dependent anisotropy factor $\gamma_H$ = $H_{c2}^{ab}$/$H_{c2}^{c}$, quasi-linear increase of $H_{c2}^{c}(T)$, and an upward, positive-curvature in $H_{c2}^{ab}(T)$ near $T_{\rm{C}}$. Furthermore, analysis of temperature-dependent electronic specific heat corroborates the presence of multiple superconducting gaps. Based on above findings and electronic phase diagram vs $x$, we propose that the increase of $N(E_F)$ and effective electron-phonon coupling in the vicinity of CDW quantum phase transition should be a key to the large enhancement of $T_{\rm{C}}$ in Pd$_x$TaSe$_2$., Comment: Accepted for publication in Scientific Report
- Published
- 2016
43. Primary black hole spin in OJ287 as determined by the General Relativity centenary flare
- Author
-
Valtonen, M. J., Zola, S., Ciprini, S., Gopakumar, A., Matsumoto, K., Sadakane, K., Kidger, M., Gazeas, K., Nilsson, K., Berdyugin, A., Piirola, V., Jermak, H., Baliyan, K. S., Alicavus, F., Boyd, D., Torrent, M. Campas, Campos, F., Gomez, J. Carrillo, Caton, D. B., Chavushyan, V., Dalessio, J., Debski, B., Dimitrov, D., Drozdz, M., Er, H., Erdem, A., Perez, A. Escartin, Ramazani, V. Fallah, Filippenko, A. V., Ganesh, S., Garcia, F., Pinilla, F. Gomez, Gopinathan, M., Haislip, J. B., Hudec, R., Hurst, G., Ivarsen, K. M., Jelinek, M., Joshi, A., Kagitani, M., Kaur, N., Keel, W. C., LaCluyze, A. P., Lee, B. C., Lindfors, E., de Haro, J. Lozano, Moore, J. P., Mugrauer, M., Nogues, R. Naves, Neely, A. W., Nelson, R. H., Ogloza, W., Okano, S., Pandey, J. C., Perri, M., Pihajoki, P., Poyner, G., Provencal, J., Pursimo, T., Raj, A., Reichart, D. E., Reinthal, R., Sadegi, S., Sakanoi, T., Gonzalez, J. L. Salto, Schweyer, T., Siwak, M., Alfaro, F. C. Soldan, Sonbas, E., Steele, I., Stocke, J. T., Strobl, J., Takalo, L. O., Tomov, T., Espasa, L. Tremosa, Valdes, J. R., Perez, J. Valero, Verrecchia, F., Webb, J. R., Yoneda, M., Zejmo, M., Zheng, W., Telting, J., Saario, J., Reynolds, T., Kvammen, A., Gafton, E., Karjalainen, R., Harmanen, J., and Blay, P.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
OJ287 is a quasi-periodic quasar with roughly 12 year optical cycles. It displays prominent outbursts which are predictable in a binary black hole model. The model predicted a major optical outburst in December 2015. We found that the outburst did occur within the expected time range, peaking on 2015 December 5 at magnitude 12.9 in the optical R-band. Based on Swift/XRT satellite measurements and optical polarization data, we find that it included a major thermal component. Its timing provides an accurate estimate for the spin of the primary black hole, chi = 0.313 +- 0.01. The present outburst also confirms the established general relativistic properties of the system such as the loss of orbital energy to gravitational radiation at the 2 % accuracy level and it opens up the possibility of testing the black hole no-hair theorem with a 10 % accuracy during the present decade.
- Published
- 2016
- Full Text
- View/download PDF
44. Cavity-ligand binding in a simple two-dimensional water model
- Author
-
Mazovec, G., Lukšič, M., and Hribar-Lee, B.
- Subjects
Condensed Matter - Soft Condensed Matter - Abstract
By means of Monte Carlo computer simulations in the isothermal-isobaric ensemble, we investigated the interaction of a hydrophobic ligand with the hydrophobic surfaces of various curvatures (planar, convex and concave). A simple two-dimensional model of water, hydrophobic ligand and surface was used. Hydration/dehidration phenomena concerning water molecules confined close to the molecular surface were investigated. A notable dewetting of the hydrophobic surfaces was observed together with the reorientation of the water molecules close to the surface. The hydrogen bonding network was formed to accommodate cavities next to the surfaces as well as beyond the first hydration shell. The effects were most strongly pronounced in the case of concave surfaces having large curvature. This simplified model can be further used to evaluate the thermodynamic fingerprint of the docking of hydrophobic ligands., Comment: 6 pages, 5 figures
- Published
- 2016
- Full Text
- View/download PDF
45. Search for exoplanet around northern circumpolar stars - Four planets around HD 11755, HD 12648, HD 24064, and 8 Ursae Minoris
- Author
-
Lee, B. -C., Park, M. -G., Lee, S. -M., Jeong, G., Oh, H. -I., Han, I., Lee, J. W., Lee, C. -U., Kim, S. -L., and Kim, K. -M.
- Subjects
Astrophysics - Solar and Stellar Astrophysics - Abstract
Aims. This program originated as the north pole region extension of the established exoplanet survey using 1.8 m telescope at Bohyunsan Optical Astronomy Observatory (BOAO). The aim of our paper is to find exoplanets in northern circumpolar stars with a precise radial velocity (RV) survey. Methods. We have selected about 200 northern circumpolar stars with the following criteria: Dec. > 70 degree, 0.6 < B-V < 1.6, HIPPARCOS_scat < 0.05 magnitude, and 5.0 < mv < 7.0. The high-resolution, fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) was used for the RV survey. Chromospheric activities, the HIPPARCOS photometry, and line bisectors were analyzed to exclude other causes for the RV variations. Results. In 2010, we started to monitor the candidates and have completed initial screening for all stars for the last five years. We present the detection of four new exoplanets. Stars HD 11755, HD 12648, HD 24064, and 8 UMi all show evidence for giant planets in Keplerian motion. The companion to HD 11755 has a minimum mass of 6.5 M_Jup in a 433-day orbit with an eccentricity of 0.19. HD 12648 is orbited by a companion of minimum mass of 2.9 M_Jup having a period of 133 days and an eccentricity of 0.04. Weak surface activity was suspected in HD 24064. However, no evidence was found to be associated with the RV variations. Its companion has a minimum mass of 9.4 M_Jup, a period of 535 days, and an eccentricity of 0.35. Finally, 8 UMi has a minimum mass of 1.5 M_Jup, a period of 93 days with an eccentricity of 0.06., Comment: 9 pages, 14 figures, 6 tables, accepted for publisation in Astronomy & Astrophysics
- Published
- 2015
- Full Text
- View/download PDF
46. Azimuthally anisotropic emission of low-momentum direct photons in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV
- Author
-
Adare, A., Afanasiev, S., Aidala, C., Ajitanand, N. N., Akiba, Y., Akimoto, R., Al-Bataineh, H., Alexander, J., Alfred, M., Al-Ta'ani, H., Angerami, A., Aoki, K., Apadula, N., Aramaki, Y., Asano, H., Aschenauer, E. C., Atomssa, E. T., Averbeck, R., Awes, T. C., Azmoun, B., Babintsev, V., Bai, M., Baksay, G., Baksay, L., Bandara, N. S., Bannier, B., Barish, K. N., Bassalleck, B., Basye, A. T., Bathe, S., Baublis, V., Baumann, C., Baumgart, S., Bazilevsky, A., Beaumier, M., Beckman, S., Belikov, S., Belmont, R., Bennett, R., Berdnikov, A., Berdnikov, Y., Bickley, A. A., Blau, D. S., Bok, J. S., Boyle, K., Brooks, M. L., Bryslawskyj, J., Buesching, H., Bumazhnov, V., Bunce, G., Butsyk, S., Camacho, C. M., Campbell, S., Castera, P., Chen, C. -H., Chi, C. Y., Chiu, M., Choi, I. J., Choi, J. B., Choi, S., Choudhury, R. K., Christiansen, P., Chujo, T., Chung, P., Chvala, O., Cianciolo, V., Citron, Z., Cole, B. A., Connors, M., Constantin, P., Csanád, M., Csörgő, T., Dahms, T., Dairaku, S., Danchev, I., Danley, D., Das, K., Datta, A., Daugherity, M. S., David, G., DeBlasio, K., Dehmelt, K., Denisov, A., Deshpande, A., Desmond, E. J., Dharmawardane, K. V., Dietzsch, O., Ding, L., Dion, A., Diss, P. B., Do, J. H., Donadelli, M., D'Orazio, L., Drapier, O., Drees, A., Drees, K. A., Durham, J. M., Durum, A., Dutta, D., Edwards, S., Efremenko, Y. V., Ellinghaus, F., Engelmore, T., Enokizono, A., En'yo, H., Esumi, S., Eyser, K. O., Fadem, B., Feege, N., Fields, D. E., Finger, M., Finger, Jr., M., Fleuret, F., Fokin, S. L., Fraenkel, Z., Frantz, J. E., Franz, A., Frawley, A. D., Fujiwara, K., Fukao, Y., Fusayasu, T., Gainey, K., Gal, C., Gallus, P., Garg, P., Garishvili, A., Garishvili, I., Ge, H., Giordano, F., Glenn, A., Gong, H., Gong, X., Gonin, M., Goto, Y., de Cassagnac, R. Granier, Grau, N., Greene, S. V., Perdekamp, M. Grosse, Gunji, T., Guo, L., Gustafsson, H. -Å., Hachiya, T., Haggerty, J. S., Hahn, K. I., Hamagaki, H., Hamblen, J., Hamilton, H. F., Han, R., Han, S. Y., Hanks, J., Hartouni, E. P., Hasegawa, S., Haseler, T. O. S., Hashimoto, K., Haslum, E., Hayano, R., He, X., Heffner, M., Hemmick, T. K., Hester, T., Hill, J. C., Hohlmann, M., Hollis, R. S., Holzmann, W., Homma, K., Hong, B., Horaguchi, T., Hori, Y., Hornback, D., Hoshino, T., Hotvedt, N., Huang, J., Huang, S., Ichihara, T., Ichimiya, R., Ide, J., Iinuma, H., Ikeda, Y., Imai, K., Imrek, J., Inaba, M., Iordanova, A., Isenhower, D., Ishihara, M., Isobe, T., Issah, M., Isupov, A., Ivanishchev, D., Jacak, B. V., Javani, M., Jezghani, M., Jia, J., Jiang, X., Jin, J., Johnson, B. M., Joo, K. S., Jouan, D., Jumper, D. S., Kajihara, F., Kametani, S., Kamihara, N., Kamin, J., Kanda, S., Kaneti, S., Kang, B. H., Kang, J. H., Kang, J. S., Kapustinsky, J., Karatsu, K., Kasai, M., Kawall, D., Kawashima, M., Kazantsev, A. V., Kempel, T., Key, J. A., Khachatryan, V., Khanzadeev, A., Kijima, K. M., Kim, B. I., Kim, C., Kim, D. H., Kim, D. J., Kim, E., Kim, E. -J., Kim, G. W., Kim, H. J., Kim, K. -B., Kim, M., Kim, S. H., Kim, Y. -J., Kim, Y. K., Kimelman, B., Kinney, E., Kiriluk, K., Kiss, Á., Kistenev, E., Kitamura, R., Klatsky, J., Kleinjan, D., Kline, P., Koblesky, T., Kochenda, L., Komatsu, Y., Komkov, B., Konno, M., Koster, J., Kotchetkov, D., Kotov, D., Kozlov, A., Král, A., Kravitz, A., Krizek, F., Kunde, G. J., Kurita, K., Kurosawa, M., Kwon, Y., Kyle, G. S., Lacey, R., Lai, Y. S., Lajoie, J. G., Lebedev, A., Lee, B., Lee, D. M., Lee, J., Lee, K., Lee, K. B., Lee, K. S., Lee, S, Lee, S. H., Lee, S. R., Leitch, M. J., Leite, M. A. L., Leitgab, M., Leitner, E., Lenzi, B., Lewis, B., Li, X., Liebing, P., Lim, S. H., Levy, L. A. Linden, Liška, T., Litvinenko, A., Liu, H., Liu, M. X., Love, B., Luechtenborg, R., Lynch, D., Maguire, C. F., Makdisi, Y. I., Makek, M., Malakhov, A., Malik, M. D., Manion, A., Manko, V. I., Mannel, E., Mao, Y., Masui, H., Masumoto, S., Matathias, F., McCumber, M., McGaughey, P. L., McGlinchey, D., McKinney, C., Means, N., Meles, A., Mendoza, M., Meredith, B., Miake, Y., Mibe, T., Mignerey, A. C., Mikeš, P., Miki, K., Milov, A., Mishra, D. K., Mishra, M., Mitchell, J. T., Miyachi, Y., Miyasaka, S., Mizuno, S., Mohanty, A. K., Mohapatra, S., Montuenga, P., Moon, H. J., Moon, T., Morino, Y., Morreale, A., Morrison, D. P., Motschwiller, S., Moukhanova, T. V., Murakami, T., Murata, J., Mwai, A., Nagae, T., Nagamiya, S., Nagashima, K., Nagle, J. L., Naglis, M., Nagy, M. I., Nakagawa, I., Nakagomi, H., Nakamiya, Y., Nakamura, K. R., Nakamura, T., Nakano, K., Nattrass, C., Nederlof, A., Netrakanti, P. K., Newby, J., Nguyen, M., Nihashi, M., Niida, T., Nishimura, S., Nouicer, R., Novak, T., Novitzky, N., Nyanin, A. S., O'Brien, E., Oda, S. X., Ogilvie, C. A., Oka, M., Okada, K., Onuki, Y., Koop, J. D. Orjuela, Osborn, J. D., Oskarsson, A., Ouchida, M., Ozawa, K., Pak, R., Pantuev, V., Papavassiliou, V., Park, B. H., Park, I. H., Park, J., Park, J. S., Park, S., Park, S. K., Park, W. J., Pate, S. F., Patel, L., Patel, M., Pei, H., Peng, J. -C., Pereira, H., Perepelitsa, D. V., Perera, G. D. N., Peresedov, V., Peressounko, D. Yu., Perry, J., Petti, R., Pinkenburg, C., Pinson, R., Pisani, R. P., Proissl, M., Purschke, M. L., Purwar, A. K., Qu, H., Rak, J., Rakotozafindrabe, A., Ramson, B. J., Ravinovich, I., Read, K. F., Reygers, K., Reynolds, D., Riabov, V., Riabov, Y., Richardson, E., Rinn, T., Roach, D., Roche, G., Rolnick, S. D., Rosati, M., Rosen, C. A., Rosendahl, S. S. E., Rosnet, P., Rowan, Z., Rubin, J. G., Rukoyatkin, P., Ružička, P., Sahlmueller, B., Saito, N., Sakaguchi, T., Sakashita, K., Sako, H., Samsonov, V., Sano, M., Sano, S., Sarsour, M., Sato, S., Sato, T., Sawada, S., Schaefer, B., Schmoll, B. K., Sedgwick, K., Seele, J., Seidl, R., Semenov, A. Yu., Sen, A., Seto, R., Sett, P., Sexton, A., Sharma, D., Shein, I., Shibata, T. -A., Shigaki, K., Shimomura, M., Shoji, K., Shukla, P., Sickles, A., Silva, C. L., Silvermyr, D., Silvestre, C., Sim, K. S., Singh, B. K., Singh, C. P., Singh, V., Slunečka, M., Snowball, M., Soltz, R. A., Sondheim, W. E., Sorensen, S. P., Sourikova, I. V., Sparks, N. A., Stankus, P. W., Stenlund, E., Stepanov, M., Ster, A., Stoll, S. P., Sugitate, T., Sukhanov, A., Sumita, T., Sun, J., Sziklai, J., Takagui, E. M., Takahara, A., Taketani, A., Tanabe, R., Tanaka, Y., Taneja, S., Tanida, K., Tannenbaum, M. J., Tarafdar, S., Taranenko, A., Tarján, P., Tennant, E., Themann, H., Thomas, T. L., Tieulent, R., Timilsina, A., Todoroki, T., Togawa, M., Toia, A., Tomášek, L., Tomášek, M., Torii, H., Towell, C. L., Towell, R., Towell, R. S., Tserruya, I., Tsuchimoto, Y., Tsuji, T., Vale, C., Valle, H., van Hecke, H. W., Vargyas, M., Vazquez-Zambrano, E., Veicht, A., Velkovska, J., Vértesi, R., Vinogradov, A. A., Virius, M., Vossen, A., Vrba, V., Vznuzdaev, E., Wang, X. R., Watanabe, D., Watanabe, K., Watanabe, Y., Watanabe, Y. S., Wei, F., Wei, R., Wessels, J., White, A. S., White, S. N., Winter, D., Wolin, S., Wood, J. P., Woody, C. L., Wright, R. M., Wysocki, M., Xia, B., Xie, W., Xue, L., Yalcin, S., Yamaguchi, Y. L., Yamaura, K., Yang, R., Yanovich, A., Ying, J., Yokkaichi, S., Yoo, J. H., Yoon, I., You, Z., Young, G. R., Younus, I., Yu, H., Yushmanov, I. E., Zajc, W. A., Zelenski, A., Zhang, C., Zhou, S., Zolin, L., and Zou, L.
- Subjects
Nuclear Experiment - Abstract
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured 2nd and 3rd order Fourier coefficients of the azimuthal distributions of direct photons emitted at midrapidity in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV for various collision centralities. Combining two different analysis techniques, results were obtained in the transverse momentum range of $0.4
- Published
- 2015
- Full Text
- View/download PDF
47. Scaling properties of fractional momentum loss of high-pT hadrons in nucleus-nucleus collisions at $\sqrt{s_{_{NN}}}$ from 62.4 GeV to 2.76 TeV
- Author
-
Adare, A., Afanasiev, S., Aidala, C., Ajitanand, N. N., Akiba, Y., Akimoto, R., Al-Bataineh, H., Alexander, J., Alfred, M., Al-Ta'ani, H., Angerami, A., Aoki, K., Apadula, N., Aphecetche, L., Aramaki, Y., Armendariz, R., Aronson, S. H., Asai, J., Asano, H., Aschenauer, E. C., Atomssa, E. T., Averbeck, R., Awes, T. C., Azmoun, B., Babintsev, V., Bai, M., Baksay, G., Baksay, L., Baldisseri, A., Bandara, N. S., Bannier, B., Barish, K. N., Barnes, P. D., Bassalleck, B., Basye, A. T., Bathe, S., Batsouli, S., Baublis, V., Baumann, C., Baumgart, S., Bazilevsky, A., Beaumier, M., Beckman, S., Belikov, S., Belmont, R., Bennett, R., Berdnikov, A., Berdnikov, Y., Bickley, A. A., Blau, D. S., Boissevain, J. G., Bok, J. S., Borel, H., Boyle, K., Brooks, M. L., Bryslawskyj, J., Buesching, H., Bumazhnov, V., Bunce, G., Butsyk, S., Camacho, C. M., Campbell, S., Castera, P., Chang, B. S., Charvet, J. -L., Chen, C. -H., Chernichenko, S., Chi, C. Y., Chiba, J., Chiu, M., Choi, I. J., Choi, J. B., Choi, S., Choudhury, R. K., Christiansen, P., Chujo, T., Chung, P., Churyn, A., Chvala, O., Cianciolo, V., Citron, Z., Cleven, C. R., Cole, B. A., Comets, M. P., Connors, M., Constantin, P., Csanád, M., Csörgő, T., Dahms, T., Dairaku, S., Danchev, I., Danley, D., Das, K., Datta, A., Daugherity, M. S., David, G., Deaton, M. B., DeBlasio, K., Dehmelt, K., Delagrange, H., Denisov, A., d'Enterria, D., Deshpande, A., Desmond, E. J., Dharmawardane, K. V., Dietzsch, O., Ding, L., Dion, A., Diss, P. B., Do, J. H., Donadelli, M., D'Orazio, L., Drapier, O., Drees, A., Drees, K. A., Dubey, A. K., Durham, J. M., Durum, A., Dutta, D., Dzhordzhadze, V., Edwards, S., Efremenko, Y. V., Egdemir, J., Ellinghaus, F., Emam, W. S., Engelmore, T., Enokizono, A., En'yo, H., Esumi, S., Eyser, K. O., Fadem, B., Feege, N., Fields, D. E., Finger, M., Finger, Jr., M., Fleuret, F., Fokin, S. L., Fraenkel, Z., Frantz, J. E., Franz, A., Frawley, A. D., Fujiwara, K., Fukao, Y., Fusayasu, T., Gadrat, S., Gainey, K., Gal, C., Gallus, P., Garg, P., Garishvili, A., Garishvili, I., Ge, H., Giordano, F., Glenn, A., Gong, H., Gong, X., Gonin, M., Gosset, J., Goto, Y., de Cassagnac, R. Granier, Grau, N., Greene, S. V., Perdekamp, M. Grosse, Gunji, T., Guo, L., Gustafsson, H. -Å., Hachiya, T., Henni, A. Hadj, Haegemann, C., Haggerty, J. S., Hahn, K. I., Hamagaki, H., Hamblen, J., Hamilton, H. F., Han, R., Han, S. Y., Hanks, J., Harada, H., Hartouni, E. P., Haruna, K., Hasegawa, S., Haseler, T. O. S., Hashimoto, K., Haslum, E., Hayano, R., He, X., Heffner, M., Hemmick, T. K., Hester, T., Hiejima, H., Hill, J. C., Hobbs, R., Hohlmann, M., Hollis, R. S., Holzmann, W., Homma, K., Hong, B., Horaguchi, T., Hori, Y., Hornback, D., Hoshino, T., Hotvedt, N., Huang, J., Huang, S., Ichihara, T., Ichimiya, R., Ide, J., Iinuma, H., Ikeda, Y., Imai, K., Imrek, J., Inaba, M., Inoue, Y., Iordanova, A., Isenhower, D., Isenhower, L., Ishihara, M., Isobe, T., Issah, M., Isupov, A., Ivanishchev, D., Jacak, B. V., Javani, M., Jezghani, M., Jia, J., Jiang, X., Jin, J., Jinnouchi, O., Johnson, B. M., Joo, K. S., Jouan, D., Jumper, D. S., Kajihara, F., Kametani, S., Kamihara, N., Kamin, J., Kanda, S., Kaneta, M., Kaneti, S., Kang, B. H., Kang, J. H., Kang, J. S., Kanou, H., Kapustinsky, J., Karatsu, K., Kasai, M., Kawall, D., Kawashima, M., Kazantsev, A. V., Kempel, T., Key, J. A., Khachatryan, V., Khanzadeev, A., Kijima, K. M., Kikuchi, J., Kim, B. I., Kim, C., Kim, D. H., Kim, D. J., Kim, E., Kim, E. -J., Kim, G. W., Kim, H. J., Kim, K. -B., Kim, M., Kim, S. H., Kim, Y. -J., Kim, Y. K., Kimelman, B., Kinney, E., Kiriluk, K., Kiss, Á., Kistenev, E., Kitamura, R., Kiyomichi, A., Klatsky, J., Klay, J., Klein-Boesing, C., Kleinjan, D., Kline, P., Koblesky, T., Kochenda, L., Kochetkov, V., Komatsu, Y., Komkov, B., Konno, M., Koster, J., Kotchetkov, D., Kotov, D., Kozlov, A., Král, A., Kravitz, A., Krizek, F., Kubart, J., Kunde, G. J., Kurihara, N., Kurita, K., Kurosawa, M., Kweon, M. J., Kwon, Y., Kyle, G. S., Lacey, R., Lai, Y. S., Lajoie, J. G., Lebedev, A., Lee, B., Lee, D. M., Lee, J., Lee, K., Lee, K. B., Lee, K. S., Lee, M. K., Lee, S, Lee, S. H., Lee, S. R., Lee, T., Leitch, M. J., Leite, M. A. L., Leitgab, M., Leitner, E., Lenzi, B., Lewis, B., Li, X., Liebing, P., Lim, S. H., Levy, L. A. Linden, Liška, T., Litvinenko, A., Liu, H., Liu, M. X., Love, B., Luechtenborg, R., Lynch, D., Maguire, C. F., Makdisi, Y. I., Makek, M., Malakhov, A., Malik, M. D., Manion, A., Manko, V. I., Mannel, E., Mao, Y., Mašek, L., Masui, H., Masumoto, S., Matathias, F., McCumber, M., McGaughey, P. L., McGlinchey, D., McKinney, C., Means, N., Meles, A., Mendoza, M., Meredith, B., Miake, Y., Mibe, T., Mignerey, A. C., Mikeš, P., Miki, K., Miller, T. E., Milov, A., Mioduszewski, S., Mishra, D. K., Mishra, M., Mitchell, J. T., Mitrovski, M., Miyachi, Y., Miyasaka, S., Mizuno, S., Mohanty, A. K., Mohapatra, S., Montuenga, P., Moon, H. J., Moon, T., Morino, Y., Morreale, A., Morrison, D. P., Motschwiller, S., Moukhanova, T. V., Mukhopadhyay, D., Murakami, T., Murata, J., Mwai, A., Nagae, T., Nagamiya, S., Nagashima, K., Nagata, Y., Nagle, J. L., Naglis, M., Nagy, M. I., Nakagawa, I., Nakagomi, H., Nakamiya, Y., Nakamura, K. R., Nakamura, T., Nakano, K., Nattrass, C., Nederlof, A., Netrakanti, P. K., Newby, J., Nguyen, M., Nihashi, M., Niida, T., Nishimura, S., Norman, B. E., Nouicer, R., Novak, T., Novitzky, N., Nyanin, A. S., O'Brien, E., Oda, S. X., Ogilvie, C. A., Ohnishi, H., Oka, M., Okada, K., Omiwade, O. O., Onuki, Y., Koop, J. D. Orjuela, Osborn, J. D., Oskarsson, A., Ouchida, M., Ozawa, K., Pak, R., Pal, D., Palounek, A. P. T., Pantuev, V., Papavassiliou, V., Park, B. H., Park, I. H., Park, J., Park, J. S., Park, S., Park, S. K., Park, W. J., Pate, S. F., Patel, L., Patel, M., Pei, H., Peng, J. -C., Pereira, H., Perepelitsa, D. V., Perera, G. D. N., Peresedov, V., Peressounko, D. Yu., Perry, J., Petti, R., Pinkenburg, C., Pinson, R., Pisani, R. P., Proissl, M., Purschke, M. L., Purwar, A. K., Qu, H., Rak, J., Rakotozafindrabe, A., Ramson, B. J., Ravinovich, I., Read, K. F., Rembeczki, S., Reuter, M., Reygers, K., Reynolds, D., Riabov, V., Riabov, Y., Richardson, E., Rinn, T., Roach, D., Roche, G., Rolnick, S. D., Romana, A., Rosati, M., Rosen, C. A., Rosendahl, S. S. E., Rosnet, P., Rowan, Z., Rubin, J. G., Rukoyatkin, P., Ružička, P., Rykov, V. L., Sahlmueller, B., Saito, N., Sakaguchi, T., Sakai, S., Sakashita, K., Sakata, H., Sako, H., Samsonov, V., Sano, M., Sano, S., Sarsour, M., Sato, S., Sato, T., Sawada, S., Schaefer, B., Schmoll, B. K., Sedgwick, K., Seele, J., Seidl, R., Semenov, A. Yu., Semenov, V., Sen, A., Seto, R., Sett, P., Sexton, A., Sharma, D., Shein, I., Shevel, A., Shibata, T. -A., Shigaki, K., Shimomura, M., Shoji, K., Shukla, P., Sickles, A., Silva, C. L., Silvermyr, D., Silvestre, C., Sim, K. S., Singh, B. K., Singh, C. P., Singh, V., Skutnik, S., Slunečka, M., Snowball, M., Soldatov, A., Soltz, R. A., Sondheim, W. E., Sorensen, S. P., Sourikova, I. V., Sparks, N. A., Staley, F., Stankus, P. W., Stenlund, E., Stepanov, M., Ster, A., Stoll, S. P., Sugitate, T., Suire, C., Sukhanov, A., Sumita, T., Sun, J., Sziklai, J., Tabaru, T., Takagi, S., Takagui, E. M., Takahara, A., Taketani, A., Tanabe, R., Tanaka, Y., Taneja, S., Tanida, K., Tannenbaum, M. J., Tarafdar, S., Taranenko, A., Tarján, P., Tennant, E., Themann, H., Thomas, T. L., Tieulent, R., Timilsina, A., Todoroki, T., Togawa, M., Toia, A., Tojo, J., Tomášek, L., Tomášek, M., Torii, H., Towell, C. L., Towell, R., Towell, R. S., Tram, V-N., Tserruya, I., Tsuchimoto, Y., Tsuji, T., Vale, C., Valle, H., van Hecke, H. W., Vargyas, M., Vazquez-Zambrano, E., Veicht, A., Velkovska, J., Vértesi, R., Vinogradov, A. A., Virius, M., Vossen, A., Vrba, V., Vznuzdaev, E., Wagner, M., Walker, D., Wang, X. R., Watanabe, D., Watanabe, K., Watanabe, Y., Watanabe, Y. S., Wei, F., Wei, R., Wessels, J., White, A. S., White, S. N., Winter, D., Wolin, S., Wood, J. P., Woody, C. L., Wright, R. M., Wysocki, M., Xia, B., Xie, W., Xue, L., Yalcin, S., Yamaguchi, Y. L., Yamaura, K., Yang, R., Yanovich, A., Yasin, Z., Ying, J., Yokkaichi, S., Yoo, J. H., Yoon, I., You, Z., Young, G. R., Younus, I., Yu, H., Yushmanov, I. E., Zajc, W. A., Zaudtke, O., Zelenski, A., Zhang, C., Zhou, S., Zimamyi, J., Zolin, L., and Zou, L.
- Subjects
Nuclear Experiment - Abstract
Measurements of the fractional momentum loss ($S_{\rm loss}\equiv{\delta}p_T/p_T$) of high-transverse-momentum-identified hadrons in heavy ion collisions are presented. Using $\pi^0$ in Au$+$Au and Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=62.4$ and 200 GeV measured by the PHENIX experiment at the Relativistic Heavy Ion Collider and and charged hadrons in Pb$+$Pb collisions measured by the ALICE experiment at the Large Hadron Collider, we studied the scaling properties of $S_{\rm loss}$ as a function of a number of variables: the number of participants, $N_{\rm part}$, the number of quark participants, $N_{\rm qp}$, the charged-particle density, $dN_{\rm ch}/d\eta$, and the Bjorken energy density times the equilibration time, $\varepsilon_{\rm Bj}\tau_{0}$. We find that the $p_T$ where $S_{\rm loss}$ has its maximum, varies both with centrality and collision energy. Above the maximum, $S_{\rm loss}$ tends to follow a power-law function with all four scaling variables. The data at $\sqrt{s_{_{NN}}}$=200 GeV and 2.76 TeV, for sufficiently high particle densities, have a common scaling of $S_{\rm loss}$ with $dN_{\rm ch}/d\eta$ and $\varepsilon_{\rm Bj}\tau_{0}$, lending insight on the physics of parton energy loss., Comment: 630 authors, 21 pages, 16 figures, 7 tables. v2 is version accepted by Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.html
- Published
- 2015
- Full Text
- View/download PDF
48. Transverse energy production and charged-particle multiplicity at midrapidity in various systems from $\sqrt{s_{NN}}=7.7$ to 200 GeV
- Author
-
Adare, A., Afanasiev, S., Aidala, C., Ajitanand, N. N., Akiba, Y., Akimoto, R., Al-Bataineh, H., Alexander, J., Alfred, M., Al-Jamel, A., Al-Ta'ani, H., Angerami, A., Aoki, K., Apadula, N., Aphecetche, L., Aramaki, Y., Armendariz, R., Aronson, S. H., Asai, J., Asano, H., Aschenauer, E. C., Atomssa, E. T., Averbeck, R., Awes, T. C., Azmoun, B., Babintsev, V., Bai, M., Bai, X., Baksay, G., Baksay, L., Baldisseri, A., Bandara, N. S., Bannier, B., Barish, K. N., Barnes, P. D., Bassalleck, B., Basye, A. T., Bathe, S., Batsouli, S., Baublis, V., Bauer, F., Baumann, C., Baumgart, S., Bazilevsky, A., Beaumier, M., Beckman, S., Belikov, S., Belmont, R., Bennett, R., Berdnikov, A., Berdnikov, Y., Bhom, J. H., Bickley, A. A., Bjorndal, M. T., Black, D., Blau, D. S., Boissevain, J. G., Bok, J. S., Borel, H., Boyle, K., Brooks, M. L., Brown, D. S., Bryslawskyj, J., Bucher, D., Buesching, H., Bumazhnov, V., Bunce, G., Burward-Hoy, J. M., Butsyk, S., Campbell, S., Caringi, A., Castera, P., Chai, J. -S., Chang, B. S., Charvet, J. -L., Chen, C. -H., Chernichenko, S., Chi, C. Y., Chiba, J., Chiu, M., Choi, I. J., Choi, J. B., Choi, S., Choudhury, R. K., Christiansen, P., Chujo, T., Chung, P., Churyn, A., Chvala, O., Cianciolo, V., Citron, Z., Cleven, C. R., Cobigo, Y., Cole, B. A., Comets, M. P., del Valle, Z. Conesa, Connors, M., Constantin, P., Cronin, N., Crossette, N., Csanád, M., Csörgő, T., Dahms, T., Dairaku, S., Danchev, I., Danley, D., Das, K., Datta, A., Daugherity, M. S., David, G., Dayananda, M. K., Deaton, M. B., DeBlasio, K., Dehmelt, K., Delagrange, H., Denisov, A., d'Enterria, D., Deshpande, A., Desmond, E. J., Dharmawardane, K. V., Dietzsch, O., Ding, L., Dion, A., Diss, P. B., Do, J. H., Donadelli, M., D'Orazio, L., Drachenberg, J. L., Drapier, O., Drees, A., Drees, K. A., Dubey, A. K., Durham, J. M., Durum, A., Dutta, D., Dzhordzhadze, V., Edwards, S., Efremenko, Y. V., Egdemir, J., Ellinghaus, F., Emam, W. S., Engelmore, T., Enokizono, A., En'yo, H., Espagnon, B., Esumi, S., Eyser, K. O., Fadem, B., Feege, N., Fields, D. E., Finger, M., Finger Jr., M., Fleuret, F., Fokin, S. L., Forestier, B., Fraenkel, Z., Frantz, J. E., Franz, A., Frawley, A. D., Fujiwara, K., Fukao, Y., Fung, S. -Y., Fusayasu, T., Gadrat, S., Gainey, K., Gal, C., Gallus, P., Garg, P., Garishvili, A., Garishvili, I., Gastineau, F., Ge, H., Germain, M., Giordano, F., Glenn, A., Gong, H., Gong, X., Gonin, M., Gosset, J., Goto, Y., de Cassagnac, R. Granier, Grau, N., Greene, S. V., Grim, G., Perdekamp, M. Grosse, Gu, Y., Gunji, T., Guo, L., Guragain, H., Gustafsson, H. -Å., Hachiya, T., Henni, A. Hadj, Haegemann, C., Haggerty, J. S., Hagiwara, M. N., Hahn, K. I., Hamagaki, H., Hamblen, J., Hamilton, H. F., Han, R., Han, S. Y., Hanks, J., Harada, H., Hartouni, E. P., Haruna, K., Harvey, M., Hasegawa, S., Haseler, T. O. S., Hashimoto, K., Haslum, E., Hasuko, K., Hayano, R., Hayashi, S., He, X., Heffner, M., Hemmick, T. K., Hester, T., Heuser, J. M., Hiejima, H., Hill, J. C., Hobbs, R., Hohlmann, M., Hollis, R. S., Holmes, M., Holzmann, W., Homma, K., Hong, B., Horaguchi, T., Hori, Y., Hornback, D., Hoshino, T., Hotvedt, N., Huang, J., Huang, S., Hur, M. G., Ichihara, T., Ichimiya, R., Iinuma, H., Ikeda, Y., Imai, K., Imazu, Y., Imrek, J., Inaba, M., Inoue, Y., Iordanova, A., Isenhower, D., Isenhower, L., Ishihara, M., Isinhue, A., Isobe, T., Issah, M., Isupov, A., Ivanishchev, D., Iwanaga, Y., Jacak, B. V., Javani, M., Jeon, S. J., Jezghani, M., Jia, J., Jiang, X., Jin, J., Jinnouchi, O., Johnson, B. M., Jones, T., Joo, K. S., Jouan, D., Jumper, D. S., Kajihara, F., Kametani, S., Kamihara, N., Kamin, J., Kanda, S., Kaneta, M., Kaneti, S., Kang, B. H., Kang, J. H., Kang, J. S., Kanou, H., Kapustinsky, J., Karatsu, K., Kasai, M., Kawagishi, T., Kawall, D., Kawashima, M., Kazantsev, A. V., Kelly, S., Kempel, T., Key, J. A., Khachatryan, V., Khandai, P. K., Khanzadeev, A., Kijima, K. M., Kikuchi, J., Kim, A., Kim, B. I., Kim, C., Kim, D. H., Kim, D. J., Kim, E., Kim, E. -J., Kim, G. W., Kim, H. J., Kim, K. -B., Kim, M., Kim, Y. -J., Kim, Y. K., Kim, Y. -S., Kimelman, B., Kinney, E., Kiss, Á., Kistenev, E., Kitamura, R., Kiyomichi, A., Klatsky, J., Klay, J., Klein-Boesing, C., Kleinjan, D., Kline, P., Koblesky, T., Kochenda, L., Kochetkov, V., Kofarago, M., Komatsu, Y., Komkov, B., Konno, M., Koster, J., Kotchetkov, D., Kotov, D., Kozlov, A., Král, A., Kravitz, A., Krizek, F., Kroon, P. J., Kubart, J., Kunde, G. J., Kurihara, N., Kurita, K., Kurosawa, M., Kweon, M. J., Kwon, Y., Kyle, G. S., Lacey, R., Lai, Y. S., Lajoie, J. G., Lebedev, A., Bornec, Y. Le, Leckey, S., Lee, B., Lee, D. M., Lee, G. H., Lee, J., Lee, K. B., Lee, K. S., Lee, M. K., Lee, S, Lee, S. H., Lee, S. R., Lee, T., Leitch, M. J., Leite, M. A. L., Leitgab, M., Lenzi, B., Lewis, B., Li, X., Li, X. H., Lichtenwalner, P., Liebing, P., Lim, H., Lim, S. H., Levy, L. A. Linden, Liška, T., Litvinenko, A., Liu, H., Liu, M. X., Love, B., Lynch, D., Maguire, C. F., Makdisi, Y. I., Makek, M., Malakhov, A., Malik, M. D., Manion, A., Manko, V. I., Mannel, E., Mao, Y., Maruyama, T., Mašek, L., Masui, H., Masumoto, S., Matathias, F., McCain, M. C., McCumber, M., McGaughey, P. L., McGlinchey, D., McKinney, C., Means, N., Meles, A., Mendoza, M., Meredith, B., Miake, Y., Mibe, T., Midori, J., Mignerey, A. C., Mikeš, P., Miki, K., Miller, T. E., Milov, A., Mioduszewski, S., Mishra, D. K., Mishra, G. C., Mishra, M., Mitchell, J. T., Mitrovski, M., Miyachi, Y., Miyasaka, S., Mizuno, S., Mohanty, A. K., Mohapatra, S., Montuenga, P., Moon, H. J., Moon, T., Morino, Y., Morreale, A., Morrison, D. P., Moskowitz, M., Moss, J. M., Motschwiller, S., Moukhanova, T. V., Mukhopadhyay, D., Murakami, T., Murata, J., Mwai, A., Nagae, T., Nagamiya, S., Nagashima, K., Nagata, Y., Nagle, J. L., Naglis, M., Nagy, M. I., Nakagawa, I., Nakagomi, H., Nakamiya, Y., Nakamura, K. R., Nakamura, T., Nakano, K., Nam, S., Nattrass, C., Nederlof, A., Netrakanti, P. K., Newby, J., Nguyen, M., Nihashi, M., Niida, T., Nishimura, S., Norman, B. E., Nouicer, R., Novak, T., Novitzky, N., Nukariya, A., Nyanin, A. S., Nystrand, J., Oakley, C., Obayashi, H., O'Brien, E., Oda, S. X., Ogilvie, C. A., Ohnishi, H., Oide, H., Ojha, I. D., Oka, M., Okada, K., Omiwade, O. O., Onuki, Y., Koop, J. D. Orjuela, Osborn, J. D., Oskarsson, A., Otterlund, I., Ouchida, M., Ozawa, K., Pak, R., Pal, D., Palounek, A. P. T., Pantuev, V., Papavassiliou, V., Park, B. H., Park, I. H., Park, J., Park, J. S., Park, S., Park, S. K., Park, W. J., Pate, S. F., Patel, L., Patel, M., Pei, H., Peng, J. -C., Pereira, H., Perepelitsa, D. V., Perera, G. D. N., Peresedov, V., Peressounko, D. Yu., Perry, J., Petti, R., Pinkenburg, C., Pinson, R., Pisani, R. P., Proissl, M., Purschke, M. L., Purwar, A. K., Qu, H., Rak, J., Rakotozafindrabe, A., Ramson, B. J., Ravinovich, I., Read, K. F., Rembeczki, S., Reuter, M., Reygers, K., Reynolds, D., Riabov, V., Riabov, Y., Richardson, E., Rinn, T., Riveli, N., Roach, D., Roche, G., Rolnick, S. D., Romana, A., Rosati, M., Rosen, C. A., Rosendahl, S. S. E., Rosnet, P., Rowan, Z., Rubin, J. G., Rukoyatkin, P., Ružička, P., Rykov, V. L., Ryu, M. S., Ryu, S. S., Sahlmueller, B., Saito, N., Sakaguchi, T., Sakai, S., Sakashita, K., Sakata, H., Sako, H., Samsonov, V., Sano, M., Sano, S., Sarsour, M., Sato, H. D., Sato, S., Sato, T., Sawada, S., Schaefer, B., Schmoll, B. K., Sedgwick, K., Seele, J., Seidl, R., Sekiguchi, Y., Semenov, V., Sen, A., Seto, R., Sett, P., Sexton, A., Sharma, D., Shaver, A., Shea, T. K., Shein, I., Shevel, A., Shibata, T. -A., Shigaki, K., Shimomura, M., Shohjoh, T., Shoji, K., Shukla, P., Sickles, A., Silva, C. L., Silvermyr, D., Silvestre, C., Sim, K. S., Singh, B. K., Singh, C. P., Singh, V., Skolnik, M., Skutnik, S., Slunečka, M., Smith, W. C., Snowball, M., Solano, S., Soldatov, A., Soltz, R. A., Sondheim, W. E., Sorensen, S. P., Sourikova, I. V., Staley, F., Stankus, P. W., Steinberg, P., Stenlund, E., Stepanov, M., Ster, A., Stoll, S. P., Stone, M. R., Sugitate, T., Suire, C., Sukhanov, A., Sullivan, J. P., Sumita, T., Sun, J., Sziklai, J., Tabaru, T., Takagi, S., Takagui, E. M., Takahara, A., Taketani, A., Tanabe, R., Tanaka, K. H., Tanaka, Y., Taneja, S., Tanida, K., Tannenbaum, M. J., Tarafdar, S., Taranenko, A., Tarján, P., Tennant, E., Themann, H., Thomas, D., Thomas, T. L., Tieulent, R., Timilsina, A., Todoroki, T., Togawa, M., Toia, A., Tojo, J., Tomášek, L., Tomášek, M., Torii, H., Towell, C. L., Towell, R., Towell, R. S., Tram, V-N., Tserruya, I., Tsuchimoto, Y., Tsuji, T., Tuli, S. K., Tydesjö, H., Tyurin, N., Vale, C., Valle, H., van Hecke, H. W., Vargyas, M., Vazquez-Zambrano, E., Veicht, A., Velkovska, J., Vértesi, R., Vinogradov, A. A., Virius, M., Voas, B., Vossen, A., Vrba, V., Vznuzdaev, E., Wagner, M., Walker, D., Wang, X. R., Watanabe, D., Watanabe, K., Watanabe, Y., Watanabe, Y. S., Wei, F., Wei, R., Wessels, J., Whitaker, S., White, A. S., White, S. N., Willis, N., Winter, D., Wolin, S., Woody, C. L., Wright, R. M., Wysocki, M., Xia, B., Xie, W., Xue, L., Yalcin, S., Yamaguchi, Y. L., Yamaura, K., Yang, R., Yanovich, A., Yasin, Z., Ying, J., Yokkaichi, S., Yoo, J. H., Yoon, I., You, Z., Young, G. R., Younus, I., Yu, H., Yushmanov, I. E., Zajc, W. A., Zaudtke, O., Zelenski, A., Zhang, C., Zhou, S., Zimamyi, J., Zolin, L., and Zou, L.
- Subjects
Nuclear Experiment - Abstract
Measurements of midrapidity charged particle multiplicity distributions, $dN_{\rm ch}/d\eta$, and midrapidity transverse-energy distributions, $dE_T/d\eta$, are presented for a variety of collision systems and energies. Included are distributions for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$, 130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=200$ and 62.4 GeV, Cu$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, U$+$U collisions at $\sqrt{s_{_{NN}}}=193$ GeV, $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, and $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Centrality-dependent distributions at midrapidity are presented in terms of the number of nucleon participants, $N_{\rm part}$, and the number of constituent quark participants, $N_{q{\rm p}}$. For all $A$$+$$A$ collisions down to $\sqrt{s_{_{NN}}}=7.7$ GeV, it is observed that the midrapidity data are better described by scaling with $N_{q{\rm p}}$ than scaling with $N_{\rm part}$. Also presented are estimates of the Bjorken energy density, $\varepsilon_{\rm BJ}$, and the ratio of $dE_T/d\eta$ to $dN_{\rm ch}/d\eta$, the latter of which is seen to be constant as a function of centrality for all systems., Comment: 706 authors, 32 pages, 20 figures, 34 tables, 2004, 2005, 2008, 2010, 2011, and 2012 data. v2 is version accepted for publication in Phys. Rev. C
- Published
- 2015
- Full Text
- View/download PDF
49. Dielectron production in Au$+$Au collisions at $\sqrt{s_{NN}}$=200 GeV
- Author
-
Adare, A., Aidala, C., Ajitanand, N. N., Akiba, Y., Akimoto, R., Alexander, J., Alfred, M., Al-Ta'ani, H., Angerami, A., Aoki, K., Apadula, N., Aramaki, Y., Asano, H., Aschenauer, E. C., Atomssa, E. T., Averbeck, R., Awes, T. C., Azmoun, B., Babintsev, V., Bai, M., Bandara, N. S., Bannier, B., Barish, K. N., Bassalleck, B., Bathe, S., Baublis, V., Baumgart, S., Bazilevsky, A., Beaumier, M., Beckman, S., Belmont, R., Berdnikov, A., Berdnikov, Y., Blau, D. S., Bok, J. S., Boyle, K., Brooks, M. L., Bryslawskyj, J., Buesching, H., Bumazhnov, V., Butsyk, S., Campbell, S., Castera, P., Chen, C. -H., Chi, C. Y., Chiu, M., Choi, I. J., Choi, J. B., Choi, S., Choudhury, R. K., Christiansen, P., Chujo, T., Chvala, O., Cianciolo, V., Citron, Z., Cole, B. A., Connors, M., Csanád, M., Csörgő, T., Dairaku, S., Danley, D., Datta, A., Daugherity, M. S., David, G., DeBlasio, K., Dehmelt, K., Denisov, A., Deshpande, A., Desmond, E. J., Dharmawardane, K. V., Dietzsch, O., Ding, L., Dion, A., Diss, P. B., Do, J. H., Donadelli, M., D'Orazio, L., Drapier, O., Drees, A., Drees, K. A., Durham, J. M., Durum, A., Edwards, S., Efremenko, Y. V., Engelmore, T., Enokizono, A., Esumi, S., Eyser, K. O., Fadem, B., Feege, N., Fields, D. E., Finger, M., Finger, Jr., M., Fleuret, F., Fokin, S. L., Frantz, J. E., Franz, A., Frawley, A. D., Fukao, Y., Fusayasu, T., Gainey, K., Gal, C., Gallus, P., Garg, P., Garishvili, A., Garishvili, I., Ge, H., Giordano, F., Glenn, A., Gong, X., Gonin, M., Goto, Y., de Cassagnac, R. Granier, Grau, N., Greene, S. V., Perdekamp, M. Grosse, Gunji, T., Guo, L., Gustafsson, H. -Å., Hachiya, T., Haggerty, J. S., Hahn, K. I., Hamagaki, H., Hamilton, H. F., Han, S. Y., Hanks, J., Hasegawa, S., Haseler, T. O. S., Hashimoto, K., Haslum, E., Hayano, R., He, X., Hemmick, T. K., Hester, T., Hill, J. C., Hollis, R. S., Homma, K., Hong, B., Horaguchi, T., Hori, Y., Hoshino, T., Hotvedt, N., Huang, J., Huang, S., Ichihara, T., Iinuma, H., Ikeda, Y., Imai, K., Imrek, J., Inaba, M., Iordanova, A., Isenhower, D., Issah, M., Ivanishchev, D., Jacak, B. V., Javani, M., Jezghani, M., Jia, J., Jiang, X., Johnson, B. M., Joo, K. S., Jouan, D., Jumper, D. S., Kamin, J., Kanda, S., Kaneti, S., Kang, B. H., Kang, J. H., Kang, J. S., Kapustinsky, J., Karatsu, K., Kasai, M., Kawall, D., Kazantsev, A. V., Kempel, T., Key, J. A., Khachatryan, V., Khanzadeev, A., Kijima, K. M., Kim, B. I., Kim, C., Kim, D. J., Kim, E. -J., Kim, G. W., Kim, H. J., Kim, K. -B., Kim, M., Kim, Y. -J., Kim, Y. K., Kimelman, B., Kinney, E., Kiss, Á., Kistenev, E., Kitamura, R., Klatsky, J., Kleinjan, D., Kline, P., Koblesky, T., Komatsu, Y., Komkov, B., Koster, J., Kotchetkov, D., Kotov, D., Král, A., Krizek, F., Kunde, G. J., Kurita, K., Kurosawa, M., Kwon, Y., Kyle, G. S., Lacey, R., Lai, Y. S., Lajoie, J. G., Lebedev, A., Lee, B., Lee, D. M., Lee, J., Lee, K. B., Lee, K. S., Lee, S, Lee, S. H., Lee, S. R., Leitch, M. J., Leite, M. A. L., Leitgab, M., Lewis, B., Li, X., Lim, S. H., Levy, L. A. Linden, Liu, M. X., Love, B., Lynch, D., Maguire, C. F., Makdisi, Y. I., Makek, M., Manion, A., Manko, V. I., Mannel, E., Masumoto, S., McCumber, M., McGaughey, P. L., McGlinchey, D., McKinney, C., Meles, A., Mendoza, M., Meredith, B., Miake, Y., Mibe, T., Mignerey, A. C., Milov, A., Mishra, D. K., Mitchell, J. T., Miyachi, Y., Miyasaka, S., Mizuno, S., Mohanty, A. K., Mohapatra, S., Montuenga, P., Moon, H. J., Moon, T., Morrison, D. P., Motschwiller, S., Moukhanova, T. V., Murakami, T., Murata, J., Mwai, A., Nagae, T., Nagamiya, S., Nagashima, K., Nagle, J. L., Nagy, M. I., Nakagawa, I., Nakagomi, H., Nakamiya, Y., Nakamura, K. R., Nakamura, T., Nakano, K., Nattrass, C., Nederlof, A., Netrakanti, P. K., Nihashi, M., Niida, T., Nishimura, S., Nouicer, R., Novak, T., Novitzky, N., Nyanin, A. S., O'Brien, E., Ogilvie, C. A., Okada, K., Koop, J. D. Orjuela, Osborn, J. D., Oskarsson, A., Ouchida, M., Ozawa, K., Pak, R., Pantuev, V., Papavassiliou, V., Park, B. H., Park, I. H., Park, J. S., Park, S., Park, S. K., Pate, S. F., Patel, L., Patel, M., Pei, H., Peng, J. -C., Pereira, H., Perepelitsa, D. V., Perera, G. D. N., Peressounko, D. Yu., Perry, J., Petti, R., Pinkenburg, C., Pinson, R., Pisani, R. P., Proissl, M., Purschke, M. L., Qu, H., Rak, J., Ramson, B. J., Ravinovich, I., Read, K. F., Reynolds, D., Riabov, V., Riabov, Y., Richardson, E., Rinn, T., Roach, D., Roche, G., Rolnick, S. D., Rosati, M., Rowan, Z., Rubin, J. G., Sahlmueller, B., Saito, N., Sakaguchi, T., Sako, H., Samsonov, V., Sano, M., Sarsour, M., Sato, S., Sawada, S., Schaefer, B., Schmoll, B. K., Sedgwick, K., Seidl, R., Sen, A., Seto, R., Sett, P., Sexton, A., Sharma, D., Shein, I., Shibata, T. -A., Shigaki, K., Shimomura, M., Shoji, K., Shukla, P., Sickles, A., Silva, C. L., Silvermyr, D., Sim, K. S., Singh, B. K., Singh, C. P., Singh, V., Slunečka, M., Snowball, M., Soltz, R. A., Sondheim, W. E., Sorensen, S. P., Sourikova, I. V., Stankus, P. W., Stenlund, E., Stepanov, M., Ster, A., Stoll, S. P., Sugitate, T., Sukhanov, A., Sumita, T., Sun, J., Sziklai, J., Takagui, E. M., Takahara, A., Taketani, A., Tanaka, Y., Taneja, S., Tanida, K., Tannenbaum, M. J., Tarafdar, S., Taranenko, A., Tennant, E., Themann, H., Tieulent, R., Timilsina, A., Todoroki, T., Tomášek, L., Tomášek, M., Torii, H., Towell, C. L., Towell, R., Towell, R. S., Tserruya, I., Tsuchimoto, Y., Tsuji, T., Vale, C., van Hecke, H. W., Vargyas, M., Vazquez-Zambrano, E., Veicht, A., Velkovska, J., Vértesi, R., Virius, M., Vossen, A., Vrba, V., Vznuzdaev, E., Wang, X. R., Watanabe, D., Watanabe, K., Watanabe, Y., Watanabe, Y. S., Wei, F., Wei, R., White, A. S., White, S. N., Winter, D., Wolin, S., Woody, C. L., Wysocki, M., Xia, B., Xue, L., Yalcin, S., Yamaguchi, Y. L., Yang, R., Yanovich, A., Ying, J., Yokkaichi, S., Yoo, J. H., Yoon, I., You, Z., Younus, I., Yu, H., Yushmanov, I. E., Zajc, W. A., Zelenski, A., Zhou, S., and Zou, L.
- Subjects
Nuclear Experiment - Abstract
We present measurements of $e^+e^-$ production at midrapidity in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV. The invariant yield is studied within the PHENIX detector acceptance over a wide range of mass ($m_{ee} <$ 5 GeV/$c^2$) and pair transverse momentum ($p_T$ $<$ 5 GeV/$c$), for minimum bias and for five centrality classes. The \ee yield is compared to the expectations from known sources. In the low-mass region ($m_{ee}=0.30$--0.76 GeV/$c^2$) there is an enhancement that increases with centrality and is distributed over the entire pair \pt range measured. It is significantly smaller than previously reported by the PHENIX experiment and amounts to $2.3\pm0.4({\rm stat})\pm0.4({\rm syst})\pm0.2^{\rm model}$ or to $1.7\pm0.3({\rm stat})\pm0.3({\rm syst})\pm0.2^{\rm model}$ for minimum bias collisions when the open-heavy-flavor contribution is calculated with {\sc pythia} or {\sc mc@nlo}, respectively. The inclusive mass and $p_T$ distributions as well as the centrality dependence are well reproduced by model calculations where the enhancement mainly originates from the melting of the $\rho$ meson resonance as the system approaches chiral symmetry restoration. In the intermediate-mass region ($m_{ee}$ = 1.2--2.8 GeV/$c^2$), the data hint at a significant contribution in addition to the yield from the semileptonic decays of heavy-flavor mesons., Comment: 447 authors, 38 pages, 38 figures, 9 tables, 2010 data. v2 is Phys. Rev. C accepted version. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.html
- Published
- 2015
50. Dynamical analysis of galaxy cluster merger Abell 2146
- Author
-
White, J. A., Canning, R. E. A., King, L. J., Lee, B. E., Russell, H. R., Baum, S. A, Clowe, D. I., Coleman, J. E., Donahue, M., Edge, A. C., Fabian, A. C., Johnstone, R. M., McNamara, B. R., ODea, C. P., and Sanders, J. S.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
We present a dynamical analysis of the merging galaxy cluster system Abell 2146 using spectroscopy obtained with the Gemini Multi-Object Spectrograph on the Gemini North telescope. As revealed by the Chandra X-ray Observatory, the system is undergoing a major merger and has a gas structure indicative of a recent first core passage. The system presents two large shock fronts, making it unique amongst these rare systems. The hot gas structure indicates that the merger axis must be close to the plane of the sky and that the two merging clusters are relatively close in mass, from the observation of two shock fronts. Using 63 spectroscopically determined cluster members, we apply various statistical tests to establish the presence of two distinct massive structures. With the caveat that the system has recently undergone a major merger, the virial mass estimate is M_vir = 8.5 +4.3 -4.7 x 10 ^14 M_sol for the whole system, consistent with the mass determination in a previous study using the Sunyaev-Zeldovich signal. The newly calculated redshift for the system is z = 0.2323. A two-body dynamical model gives an angle of 13-19 degrees between the merger axis and the plane of the sky, and a timescale after first core passage of 0.24-0.28 Gyr., Comment: Accepted in MNRAS on August 6 2015. 15 pages, 8 figures, 1 Table
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.