1. Physically recurrent neural network for rate and path-dependent heterogeneous materials in a finite strain framework
- Author
-
Maia, M. A., Rocha, I. B. C. M., Kovačević, D., and van der Meer, F. P.
- Subjects
Condensed Matter - Materials Science ,Computer Science - Machine Learning ,Mathematics - Numerical Analysis - Abstract
In this work, a hybrid physics-based data-driven surrogate model for the microscale analysis of heterogeneous material is investigated. The proposed model benefits from the physics-based knowledge contained in the constitutive models used in the full-order micromodel by embedding them in a neural network. Following previous developments, this paper extends the applicability of the physically recurrent neural network (PRNN) by introducing an architecture suitable for rate-dependent materials in a finite strain framework. In this model, the homogenized deformation gradient of the micromodel is encoded into a set of deformation gradients serving as input to the embedded constitutive models. These constitutive models compute stresses, which are combined in a decoder to predict the homogenized stress, such that the internal variables of the history-dependent constitutive models naturally provide physics-based memory for the network. To demonstrate the capabilities of the surrogate model, we consider a unidirectional composite micromodel with transversely isotropic elastic fibers and elasto-viscoplastic matrix material. The extrapolation properties of the surrogate model trained to replace such micromodel are tested on loading scenarios unseen during training, ranging from different strain-rates to cyclic loading and relaxation. Speed-ups of three orders of magnitude with respect to the runtime of the original micromodel are obtained., Comment: 28 pages, 26 figures
- Published
- 2024