1. An efficient GPU-accelerated multi-source global fit pipeline for LISA data analysis
- Author
-
Katz, Michael L., Karnesis, Nikolaos, Korsakova, Natalia, Gair, Jonathan R., and Stergioulas, Nikolaos
- Subjects
General Relativity and Quantum Cosmology ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The large-scale analysis task of deciphering gravitational wave signals in the LISA data stream will be difficult, requiring a large amount of computational resources and extensive development of computational methods. Its high dimensionality, multiple model types, and complicated noise profile require a global fit to all parameters and input models simultaneously. In this work, we detail our global fit algorithm, called "Erebor," designed to accomplish this challenging task. It is capable of analysing current state-of-the-art datasets and then growing into the future as more pieces of the pipeline are completed and added. We describe our pipeline strategy, the algorithmic setup, and the results from our analysis of the LDC2A Sangria dataset, which contains Massive Black Hole Binaries, compact Galactic Binaries, and a parameterized noise spectrum whose parameters are unknown to the user. We recover posterior distributions for all 15 (6) of the injected MBHBs in the LDC2A training (hidden) dataset. We catalog $\sim12000$ Galactic Binaries ($\sim8000$ as high confidence detections) for both the training and hidden datasets. All of the sources and their posterior distributions are provided in publicly available catalogs., Comment: 25 pages, 6 figures
- Published
- 2024