1. On the index of power compositional polynomials
- Author
-
Kaur, Sumandeep, Kumar, Surender, and Remete, László
- Subjects
Mathematics - Number Theory ,Mathematics - Commutative Algebra ,11R04, 11R09 - Abstract
The index of a monic irreducible polynomial $f(x)\in\mathbb{Z}[x]$ having a root $\theta$ is the index $[\mathbb{Z}_K:\mathbb{Z}[\theta]]$, where $\mathbb{Z}_K$ is the ring of algebraic integers of the number field $K=\mathbb{Q}(\theta)$. If $[\mathbb{Z}_K:\mathbb{Z}[\theta]]=1$, then $f(x)$ is monogenic. In this paper, we give necessary and sufficient conditions for a monic irreducible power compositional polynomial $f(x^k)$ belonging to $\mathbb{Z}[x]$, to be monogenic. As an application of our results, for a polynomial $f(x)=x^d+A\cdot h(x)\in\mathbb{Z}[x],$ with $d>1, \operatorname{deg} h(x)
- Published
- 2024