1. EEG classifier cross-task transfer to avoid training sessions in robot-assisted rehabilitation
- Author
-
Kueper, Niklas, Kim, Su Kyoung, and Kirchner, Elsa Andrea
- Subjects
Electrical Engineering and Systems Science - Signal Processing ,Computer Science - Machine Learning ,68 - Abstract
Background: For an individualized support of patients during rehabilitation, learning of individual machine learning models from the human electroencephalogram (EEG) is required. Our approach allows labeled training data to be recorded without the need for a specific training session. For this, the planned exoskeleton-assisted rehabilitation enables bilateral mirror therapy, in which movement intentions can be inferred from the activity of the unaffected arm. During this therapy, labeled EEG data can be collected to enable movement predictions of only the affected arm of a patient. Methods: A study was conducted with 8 healthy subjects and the performance of the classifier transfer approach was evaluated. Each subject performed 3 runs of 40 self-intended unilateral and bilateral reaching movements toward a target while EEG data was recorded from 64 channels. A support vector machine (SVM) classifier was trained under both movement conditions to make predictions for the same type of movement. Furthermore, the classifier was evaluated to predict unilateral movements by only beeing trained on the data of the bilateral movement condition. Results: The results show that the performance of the classifier trained on selected EEG channels evoked by bilateral movement intentions is not significantly reduced compared to a classifier trained directly on EEG data including unilateral movement intentions. Moreover, the results show that our approach also works with only 8 or even 4 channels. Conclusion: It was shown that the proposed classifier transfer approach enables motion prediction without explicit collection of training data. Since the approach can be applied even with a small number of EEG channels, this speaks for the feasibility of the approach in real therapy sessions with patients and motivates further investigations with stroke patients., Comment: 11 pages, 6 figures, 1 table
- Published
- 2024