1. Panoptica -- instance-wise evaluation of 3D semantic and instance segmentation maps
- Author
-
Kofler, Florian, Möller, Hendrik, Buchner, Josef A., de la Rosa, Ezequiel, Ezhov, Ivan, Rosier, Marcel, Mekki, Isra, Shit, Suprosanna, Negwer, Moritz, Al-Maskari, Rami, Ertürk, Ali, Vinayahalingam, Shankeeth, Isensee, Fabian, Pati, Sarthak, Rueckert, Daniel, Kirschke, Jan S., Ehrlich, Stefan K., Reinke, Annika, Menze, Bjoern, Wiestler, Benedikt, and Piraud, Marie
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning ,Electrical Engineering and Systems Science - Image and Video Processing - Abstract
This paper introduces panoptica, a versatile and performance-optimized package designed for computing instance-wise segmentation quality metrics from 2D and 3D segmentation maps. panoptica addresses the limitations of existing metrics and provides a modular framework that complements the original intersection over union-based panoptic quality with other metrics, such as the distance metric Average Symmetric Surface Distance. The package is open-source, implemented in Python, and accompanied by comprehensive documentation and tutorials. panoptica employs a three-step metrics computation process to cover diverse use cases. The efficacy of panoptica is demonstrated on various real-world biomedical datasets, where an instance-wise evaluation is instrumental for an accurate representation of the underlying clinical task. Overall, we envision panoptica as a valuable tool facilitating in-depth evaluation of segmentation methods., Comment: 15 pages, 6 figures, 3 tables
- Published
- 2023