1. Programmable entangled qubit states on a linear-optical platform
- Author
-
Skryabin, N. N., Biriukov, Yu. A., Dryazgov, M. A., Fldzhyan, S. A., Zhuravitskii, S. A., Argenchiev, A. S., Kondratyev, I. V., Tsoma, L. A., Okhlopkov, K. I., Gruzinov, I. M., Taratorin, K. V., Saygin, M. Yu., Dyakonov, I. V., Rakhlin, M. V., Galimov, A. I., Klimko, G. V., Sorokin, S. V., Sedova, I. V., Kulagina, M. M., Zadiranov, Yu. M., Toropov, A. A., Evlashin, S. A., Korneev, A. A., Kulik, S. P., and Straupe, S. S.
- Subjects
Quantum Physics ,Physics - Computational Physics ,Physics - Optics - Abstract
We present an experimental platform for linear-optical quantum information processing. Our setup utilizes multiphoton generation using a high-quality single-photon source, which is demultiplexed across multiple spatial channels, a custom-designed, programmable, low-loss photonic chip, and paired with high-efficiency single-photon detectors. We demonstrate the platform's capability in producing heralded arbitrary two-qubit dual-rail encoded states, a crucial building block for large-scale photonic quantum computers. The programmable chip was fully characterized through a calibration process that allowed us to create a numerical model accounting for fabrication imperfections and measurement errors. As a result, using on-chip quantum state tomography (QST), we achieved high-fidelity quantum state preparation, with a fidelity of 98.5\% specifically for the Bell state., Comment: 11 pages, 11 figures
- Published
- 2024