115 results on '"Budnev, N."'
Search Results
2. Results of the follow-up of ANTARES neutrino alerts
- Author
-
Albert, A., Alves, S., André, M., Ardid, M., Ardid, S., Aubert, J. -J., Aublin, J., Baret, B., Basa, S., Becherini, Y., Belhorma, B., Bendahman, M., Benfenati, F., Bertin, V., Biagi, S., Bissinger, M., Boumaaza, J., Bouta, M., Bouwhuis, M. C., Brânzas, H., Bruijn, R., Brunner, J., Busto, J., Caiffi, B., Calvo, D., Campion, S., Capone, A., Caramete, L., Carenini, F., Carr, J., Carretero, V., Celli, S., Cerisy, L., Chabab, M., Moursli, R. Cherkaoui El, Chiarusi, T., Circella, M., Coelho, J. A. B., Coleiro, A., Coniglione, R., Coyle, P., Creusot, A., Cruz, A. S. M., Díaz, A. F., De Martino, B., Distefano, C., Di Palma, I., Donzaud, C., Dornic, D., Drouhin, D., Eberl, T., van Eeden, T., van Eijk, D., Hedri, S. El, Khayati, N. El, Enzenhöfer, A., Fermani, P., Ferrara, G., Filippini, F., Fusco, L., Gagliardini, S., García, J., Oliver, C. Gatius, Gay, P., Geißelbrecht, N., Glotin, H., Gozzini, R., Ruiz, R. Gracia, Graf, K., Guidi, C., Haegel, L., Hallmann, S., van Haren, H., Heijboer, A. J., Hello, Y., Hennig, L., Hernández-Rey, J. J., Hößl, J., Hofestädt, J., Huang, F., Illuminati, G., James, C. W., Jisse-Jung, B., de Jong, M., de Jong, P., Kadler, M., Kalekin, O., Katz, U., Kouchner, A., Kreykenbohm, I., Kulikovskiy, V., Lahmann, R., Lamoureux, M., Lazo, A., Lefèvre, D., Leonora, E., Levi, G., Stum, S. Le, Loucatos, S., Maderer, L., Manczak, J., Marcelin, M., Margiotta, A., Marinelli, A., Martínez-Mora, J. A., Migliozzi, P., Moussa, A., Muller, R., Navas, S., Nezri, E., Fearraigh, B. Ó, Oukacha, E., Pāun, A., Pāvālas, G. E., Peña-Martínez, S., Perrin-Terrin, M., Piattelli, P., Popa, V., Pradier, T., Randazzo, N., Real, D., Riccobene, G., Romanov, A., Sánchez-Losa, A., Saina, A., Greus, F. Salesa, Samtleben, D. F. E., Sanguineti, M., Sapienza, P., Schnabel, J., Schumann, J., Schüssler, F., Seneca, J., Spurio, M., Stolarczyk, Th., Taiuti, M., Tayalati, Y., Tingay, S. J., Vallage, B., Vannoye, G., Van Elewyck, V., Viola, S., Vivolo, D., Wilms, J., Zavatarelli, S., Zegarelli, A., Zornoza, J. D., Zúñiga, J., Lipunov, V., Antipov, G., Balanutsa, P., Buckley, D., Budnev, N., Chasovnikov, A., Cheryasov, D., Francile, C., Gabovich, A., Gorbovskoy, E., Gorbunov, I., Gress, O., Kornilov, V., Kuznetsov, A., Iyudin, A., Podesta, R., Podesta, F., Lopez, R. Rebolo, Senik, V., Sierra-Rucart, M., Svertilov, S., Tiurina, N., Vlasenko, D., Yashin, I., Zhirkov, K., Croft, S., Kaplan, D. L., Anderson, G. E., Williams, A., Dobie, D., Bannister, K. W., Hancock, P. J., Evans, P. A., Kennea, J. A., Osborne, J. P., Cenko, S. B., Antier, S., Atteia, J. L., Boër, M., Klotz, A., Chaty, S., Hodapp, K., and Savchenko, V.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
High-energy neutrinos could be produced in the interaction of charged cosmic rays with matter or radiation surrounding astrophysical sources. To look for transient sources associated with neutrino emission, a follow-up program of neutrino alerts has been operating within the ANTARES Collaboration since 2009. This program, named TAToO, has triggered robotic optical telescopes (MASTER, TAROT, ROTSE and the SVOM ground based telescopes) immediately after the detection of any relevant neutrino candidate and scheduled several observations in the weeks following the detection. A subset of ANTARES events with highest probabilities of being of cosmic origin has also been followed by the Swift and the INTEGRAL satellites, the Murchison Widefield Array radio telescope and the H.E.S.S. high-energy gamma-ray telescope. The results of twelve years of observations are reported. No optical counterpart has been significantly associated with an ANTARES candidate neutrino signal during image analysis. Constraints on transient neutrino emission have been set. In September 2015, ANTARES issued a neutrino alert and during the follow-up, a potential transient counterpart was identified by Swift and MASTER. A multi-wavelength follow-up campaign has allowed to identify the nature of this source and has proven its fortuitous association with the neutrino. The return of experience is particularly important for the design of the alert system of KM3NeT, the next generation neutrino telescope in the Mediterranean Sea., Comment: 27 pages, 14 figures, submitted to JCAP
- Published
- 2024
3. Track-Like Event Analysis at the Baikal-GVD Neutrino Telescope
- Author
-
Aynutdinov, V. M., Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Bardačová, Z., Belolaptikov, I. A., Bondarev, E. A., Borina, I. V., Budnev, N. M., Chadymov, V. A., Chepurnov, A. S., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fomin, V. N., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kharuk, I. V., Khramov, E. V., Kolbin, M. M., Koligaev, S. O., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Lemeshev, Y. E., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nikolaev, A. S., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Ryabov, E. V., Safronov, G. B., Seitova, D., Shaybonov, B. A., Shelepov, M. D., Shilkin, S. D., Shirokov, E. V., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Ulzutuev, B. B., Yablokova, Y. V., Zaborov, D. N., Zavyalov, S. I., and Zvezdov, D. Y.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Instrumentation and Detectors - Abstract
Reconstructed tracks of muons produced in neutrino interactions provide the precise probe for the neutrino direction. Therefore, track-like events are a powerful tool to search for neutrino point sources. Recently, Baikal-GVD has demonstrated the first sample of low-energy neutrino candidate events extracted from the data of the season 2019 in a so-called single-cluster analysis - treating each cluster as an independent detector. In this paper, the extension of the track-like event analysis to a wider data set is discussed and the first high-energy track-like events are demonstrated. The status of multi-cluster track reconstruction and that of the event analysis are also discussed., Comment: Presented at the 38th International Cosmic Ray Conference (ICRC 2023)
- Published
- 2023
4. Atmospheric muon suppression for Baikal-GVD cascade analysis
- Author
-
Aynutdinov, V. M., Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Bardačová, Z., Belolaptikov, I. A., Bondarev, E. A., Borina, I. V., Budnev, N. M., Chadymov, V. A., Chepurnov, A. S., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fomin, V. N., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kharuk, I. V., Khramov, E. V., Kolbin, M. M., Koligaev, S. O., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Lemeshev, Y. E., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nikolaev, A. S., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Ryabov, E. V., Safronov, G. B., Seitova, D., Shaybonov, B. A., Shelepov, M. D., Shilkin, S. D., Shirokov, E. V., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Ulzutuev, B. B., Yablokova, Y. V., Zaborov, D. N., Zavyalov, S. I., and Zvezdov, D. Y.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Instrumentation and Detectors - Abstract
Baikal-GVD (Gigaton Volume Detector) is a neutrino telescope installed at a depth of 1366 m in Lake Baikal. The expedition of 2023 brought the number of optical modules in the array up to 3492 (including experimental strings). These optical modules detect the Cherenkov radiation from secondary charged particles coming from the neutrino interactions. Neutrinos produce different kinds of topologically distinct light signatures. Charged current muon neutrino interactions create an elongated track in the water. Charged and neutral current interactions of other neutrino flavors yield hadronic and electromagnetic cascades. The background in the neutrino cascade channel arises mainly due to discrete stochastic energy losses produced along atmospheric muon tracks. In this paper, a developed algorithm for the cascade event selection is presented., Comment: Presented at the 38th International Cosmic Ray Conference (ICRC 2023)
- Published
- 2023
- Full Text
- View/download PDF
5. Double cascade reconstruction in the Baikal-GVD neutrino telescope
- Author
-
Aynutdinov, V. M., Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Bardačová, Z., Belolaptikov, I. A., Bondarev, E. A., Borina, I. V., Budnev, N. M., Chadymov, V. A., Chepurnov, A. S., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fomin, V. N., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kharuk, I. V., Khramov, E. V., Kolbin, M. M., Koligaev, S. O., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Lemeshev, Y. E., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nikolaev, A. S., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Ryabov, E. V., Safronov, G. B., Seitova, D., Shaybonov, B. A., Shelepov, M. D., Shilkin, S. D., Shirokov, E. V., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Ulzutuev, B. B., Yablokova, Y. V., Zaborov, D. N., Zavyalov, S. I., and Zvezdov, D. Y.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Instrumentation and Detectors - Abstract
Baikal Gigaton Volume Detector is a cubic kilometer scale neutrino telescope under construction in Lake Baikal. As of July 2023, Baikal-GVD consists of 96 fully deployed strings resulting in 3456 optical modules installed. The observation of neutrinos is based on detection of Cherenkov radiation emitted by the products of neutrino interactions. In this contribution, description of the double cascade reconstruction technique as well as evaluation of precision of this algorithm is given., Comment: Presented at the 38th International Cosmic Ray Conference (ICRC 2023)
- Published
- 2023
- Full Text
- View/download PDF
6. Improving the efficiency of cascade detection by the Baikal-GVD neutrino telescope
- Author
-
Aynutdinov, V. M., Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Bardačová, Z., Belolaptikov, I. A., Bondarev, E. A., Borina, I. V., Budnev, N. M., Chadymov, V. A., Chepurnov, A. S., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fomin, V. N., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kharuk, I. V., Khramov, E. V., Kolbin, M. M., Koligaev, S. O., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Lemeshev, Y. E., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nikolaev, A. S., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Ryabov, E. V., Safronov, G. B., Seitova, D., Shaybonov, B. A., Shelepov, M. D., Shilkin, S. D., Shirokov, E. V., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Ulzutuev, B. B., Yablokova, Y. V., Zaborov, D. N., Zavyalov, S. I., and Zvezdov, D. Y.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Instrumentation and Detectors - Abstract
The deployment of the Baikal-GVD deep underwater neutrino telescope is in progress now. About 3500 deep underwater photodetectors (optical modules) arranged into 12 clusters are operating in Lake Baikal. For increasing the efficiency of cascade-like neutrino event detection, the telescope deployment scheme was slightly changed. Namely, the inter-cluster distance was reduced for the newly deployed clusters and additional string of optical modules are added between the clusters. The first inter-cluster string was installed in 2022 and two such strings were installed in 2023. This paper presents a Monte Carlo estimate of the impact of these configuration changes on the cascade detection efficiency as well as technical implementation and results of in-situ tests of the inter-cluster strings., Comment: Presented at the 38th International Cosmic Ray Conference (ICRC 2023)
- Published
- 2023
- Full Text
- View/download PDF
7. Diffuse neutrino flux measurements with the Baikal-GVD neutrino telescope
- Author
-
Aynutdinov, V. M., Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Bardačová, Z., Belolaptikov, I. A., Bondarev, E. A., Borina, I. V., Budnev, N. M., Chadymov, V. A., Chepurnov, A. S., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fomin, V. N., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kharuk, I. V., Khramov, E. V., Kolbin, M. M., Koligaev, S. O., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Lemeshev, Y. E., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nikolaev, A. S., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Ryabov, E. V., Safronov, G. B., Seitova, D., Shaybonov, B. A., Shelepov, M. D., Shilkin, S. D., Shirokov, E. V., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Ulzutuev, B. B., Yablokova, Y. V., Zaborov, D. N., Zavyalov, S. I., Zvezdov, D. Y., Kosogorov, N. A., Kovalev, Y. Y., Lipunova, G. V., Plavin, A. V., Semikoz, D. V., and Troitsky, S. V.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
Baikal-GVD is a next generation, kilometer-scale neutrino telescope currently under construction in Lake Baikal. GVD consists of multi-megaton subarrays (clusters) and is designed for the detection of astrophysical neutrino fluxes at energies from a few TeV up to 100 PeV. The large detector volume and modular design of Baikal-GVD allows for the measurements of the astrophysical diffuse neutrino flux to be performed already at early phases of the array construction. We present here recent results of the measurements on the diffuse cosmic neutrino flux obtained with the Baikal-GVD neutrino telescope using cascade-like events., Comment: Presented at the 38th International Cosmic Ray Conference (ICRC 2023)
- Published
- 2023
- Full Text
- View/download PDF
8. Large neutrino telescope Baikal-GVD: recent status
- Author
-
Aynutdinov, V. M., Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Bardačová, Z., Belolaptikov, I. A., Bondarev, E. A., Borina, I. V., Budnev, N. M., Chadymov, V. A., Chepurnov, A. S., Dik, 5 V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fomin, V. N., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kharuk, I. V., Khramov, E. V., Kolbin, M. M., Koligaev, S. O., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Lemeshev, Y. E., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nikolaev, A. S., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Ryabov, E. V., Safronov, G. B., Seitova, D., Shaybonov, B. A., Shelepov, M. D., Shilkin, S. D., Shirokov, E. V., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Ulzutuev, B. B., Yablokova, Y. V., Zaborov, D. N., Zavyalov, S. I., and Zvezdov, D. Y.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,High Energy Physics - Phenomenology - Abstract
The Baikal-GVD is a deep-underwater neutrino telescope being constructed in Lake Baikal. After the winter 2023 deployment campaign the detector consists of 3456 optical modules installed on 96 vertical strings. The status of the detector and progress in data analysis are discussed in present report. The Baikal-GVD data collected in 2018-2022 indicate the presence of cosmic neutrino flux in high-energy cascade events consistent with observations by the IceCube neutrino telescope. Analysis of track-like events results in identification of first high-energy muon neutrino candidates. These and other results from 2018-2022 data samples are reviewed in this report.
- Published
- 2023
- Full Text
- View/download PDF
9. Monitoring of optical properties of deep waters of Lake Baikal in 2021-2022
- Author
-
Aynutdinov, V. M., Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Bardačová, Z., Belolaptikov, I. A., Bondarev, E. A., Borina, I. V., Budnev, N. M., Chadymov, V. A., Chepurnov, A. S., Dik, 5 V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, 0 R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fomin, V. N., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kharuk, I. V., Khramov, E. V., Kolbin, M. M., Koligaev, S. O., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Lemeshev, Y. E., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nikolaev, A. S., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Ryabov, E. V., Safronov, G. B., Seitova, D., Shaybonov, B. A., Shelepov, M. D., Shilkin, S. D., Shirokov, E. V., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Ulzutuev, B. B., Yablokova, Y. V., Zaborov, D. N., Zavyalov, S. I., and Zvezdov, D. Y.
- Subjects
High Energy Physics - Phenomenology - Abstract
We present the results of the two-year (2021-2022) monitoring of absorption and scattering lengths of light with wavelength 400-620 nm within the effective volume of the deep underwater neutrino telescope Baikal-GVD, which were measured by a device Baikal-5D No.2. The Baikal-5D No.2. was installed during the 2021 winter expedition at a depth of 1180 m. The absorption and scattering lengths were measured every week in 9 spectral points. The device Baikal-5D No.2 also has the ability to measure detailed scattering and absorption spectra. The data obtained make it possible to estimate the range of changes in the absorption and scattering lengths over a sufficiently long period of time and to investigate the relationship between the processes of changes in absorption and scattering. An analysis was made of changes in absorption and scattering spectra for the period 2021-2022.
- Published
- 2023
- Full Text
- View/download PDF
10. Studies of the ambient light of deep Baikal waters with Baikal-GVD
- Author
-
Aynutdinov, V. M., Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Bardačová, Z., Belolaptikov, I. A., Bondarev, E. A., Borina, I. V., Budnev, N. M., Chadymov, V. A., Chepurnov, A. S., Dik, 5 V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, 0 R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fomin, V. N., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kharuk, I. V., Khramov, E. V., Kolbin, M. M., Koligaev, S. O., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Lemeshev, Y. E., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nikolaev, A. S., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Ryabov, E. V., Safronov, G. B., Seitova, D., Shaybonov, B. A., Shelepov, M. D., Shilkin, S. D., Shirokov, E. V., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Ulzutuev, B. B., Yablokova, Y. V., Zaborov, D. N., Zavyalov, S. I., and Zvezdov, D. Y.
- Subjects
High Energy Physics - Phenomenology ,Physics - Instrumentation and Detectors - Abstract
The Baikal-GVD neutrino detector is a deep-underwater neutrino telescope under construction and recently after the winter 2023 deployment it consists of 3456 optical modules attached on 96 vertical strings. This 3-dimensional array of photo-sensors allows to observe ambient light in the vicinity of the Baikal-GVD telescope that is associated mostly with water luminescence. Results on time and space variations of the luminescent activity are reviewed based on data collected in 2018-2022.
- Published
- 2023
- Full Text
- View/download PDF
11. Time Calibration of the Baikal-GVD Neutrino Telescope with Atmospheric Muons
- Author
-
Aynutdinov, V. M., Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Bardačová, Z., Belolaptikov, I. A., Bondarev, E. A., Borina, I. V., Budnev, N. M., Chadymov, V. A., Chepurnov, A. S., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fomin, V. N., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kharuk, I. V., Khramov, E. V., Kolbin, M. M., Koligaev, S. O., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Lemeshev, Y. E., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nikolaev, A. S., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Ryabov, E. V., Safronov, G. B., Seitova, D., Shaybonov, B. A., Shelepov, M. D., Shilkin, S. D., Shirokov, E. V., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Ulzutuev, B. B., Yablokova, Y. V., Zaborov, D. N., Zavyalov, S. I., and Zvezdov, D. Y.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Instrumentation and Detectors ,85 - Abstract
We present a new procedure for time calibration of the Baikal-GVD neutrino telescope. The track reconstruction quality depends on accurate measurements of arrival times of Cherenkov photons. Therefore, it is crucial to achieve a high precision in time calibration. For that purpose, in addition to other calibration methods, we employ a new procedure using atmospheric muons reconstructed in a single-cluster mode. The method is based on iterative determination of effective time offsets for each optical module. This paper focuses on the results of the iterative reconstruction procedure with time offsets from the previous iteration and the verification of the method developed. The theoretical muon calibration precision is estimated to be around 1.5-1.6ns., Comment: 38th International Cosmic Ray Conference (ICRC2023)
- Published
- 2023
12. Baikal-GVD Real-Time Data Processing and Follow-Up Analysis of GCN Notices
- Author
-
Aynutdinov, V. M., Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Bardačová, Z., Belolaptikov, I. A., Bondarev, E. A., Borina, I. V., Budnev, N. M., Chadymov, V. A., Chepurnov, A. S., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fomin, V. N., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kharuk, I. V., Khramov, E. V., Kolbin, M. M., Koligaev, S. O., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Lemeshev, Y. E., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nikolaev, A. S., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Ryabov, E. V., Safronov, G. B., Seitova, D., Shaybonov, B. A., Shelepov, M. D., Shilkin, S. D., Shirokov, E. V., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Ulzutuev, B. B., Yablokova, Y. V., Zaborov, D. N., Zavyalov, S. I., and Zvezdov, D. Y.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The Baikal-GVD alert system was launched at the beginning of 2021. There are alerts for muon neutrinos (long upward-going track-like events) and all-flavour neutrinos (high-energy cascades). The system is able to get a preliminary response to external alerts with a temporal delay of about 3-10 minutes. The Baikal-GVD data processing and the results of the follow-up procedure are described. We report on the analysis of the coincidence in time and direction between the Baikal-GVD cascade GVD20211208CA with an estimated energy of 43 TeV and the announced alert IceCube211208A possibly associated with a flaring state of the blazar PKS 0735+178., Comment: 9 pages, 5 figures
- Published
- 2023
- Full Text
- View/download PDF
13. Baikal-GVD Astrophysical Neutrino Candidate near the Blazar TXS~0506+056
- Author
-
Aynutdinov, V. M., Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Bardačová, Z., Belolaptikov, I. A., Bondarev, E. A., Borina, I. V., Budnev, N. M., Chadymov, V. A., Chepurnov, A. S., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fomin, V. N., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kharuk, I. V., Khramov, E. V., Kolbin, M. M., Koligaev, S. O., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Lemeshev, Y. E., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nikolaev, A. S., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Ryabov, E. V., Safronov, G. B., Seitova, D., Shaybonov, B. A., Shelepov, M. D., Shilkin, S. D., Shirokov, E. V., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Ulzutuev, B. B., Yablokova, Y. V., Zaborov, D. N., Zavyalov, S. I., Erkenov, D. Y. Zvezdov A. K., Kosogorov, N. A., Kovalev, Y. A., Kovalev, Y. Y., Plavin, A. V., Popkov, A. V., Pushkarev, A. B., Semikoz, D. V., Sotnikova, Y. V., and Troitsky, S. V.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We report on the observation of a rare neutrino event detected by Baikal-GVD in April 2021. The event GVD210418CA is the highest-energy cascade observed by Baikal-GVD so far from the direction below the horizon. The estimated cascade energy is $224\pm75$~TeV. The evaluated signalness parameter of GVD210418CA is 97.1\% using an assumption of the E$^{-2.46}$ spectrum of astrophysical neutrinos. The arrival direction of GVD210418CA is near the position of the well-known radio blazar TXS~0506+056, with the angular distance being within a 90\% directional uncertainty region of the Baikal-GVD measurement. The event was followed by a radio flare observed by the RATAN-600 radio telescope, further strengthening the case for the neutrino-blazar association., Comment: 9 pages, 6 figures, Contribution to the 38th International Cosmic Rays Conference (ICRC2023). arXiv admin note: text overlap with arXiv:2210.01650
- Published
- 2023
14. Search for directional associations between Baikal Gigaton Volume Detector neutrino-induced cascades and high-energy astrophysical sources
- Author
-
Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bardacová, Z., Belolaptikov, I. A., Bondarev, E. A., Borina, I. V., Budnev, N. M., Chepurnov, A. S., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kharuk, I., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Lemeshev, Y. E., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nikolaev, A. S., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Ryabov, E. V., Safronov, G. B., Seitova, D., Shaybonov, B. A., Shelepov, M. D., Shilkin, S. D., Shirokov, E. V., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Ulzutuev, B. B., Yablokova, Y. V., Zaborov, D. N., Zavyalov, S. I., Zvezdov, D. Y., Kosogorov, N. A., Kovalev, Y. Y., Lipunova, G. V., Plavin, A. V., Semikoz, D. V., and Troitsky, S. V.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Astrophysics of Galaxies - Abstract
Baikal-GVD has recently published its first measurement of the diffuse astrophysical neutrino flux, performed using high-energy cascade-like events. We further explore the Baikal-GVD cascade dataset collected in 2018-2022, with the aim to identify possible associations between the Baikal-GVD neutrinos and known astrophysical sources. We leverage the relatively high angular resolution of the Baikal-GVD neutrino telescope (2-3 deg.), made possible by the use of liquid water as the detection medium, enabling the study of astrophysical point sources even with cascade events. We estimate the telescope's sensitivity in the cascade channel for high-energy astrophysical sources and refine our analysis prescriptions using Monte-Carlo simulations. We primarily focus on cascades with energies exceeding 100 TeV, which we employ to search for correlation with radio-bright blazars. Although the currently limited neutrino sample size provides no statistically significant effects, our analysis suggests a number of possible associations with both extragalactic and Galactic sources. Specifically, we present an analysis of an observed triplet of neutrino candidate events in the Galactic plane, focusing on its potential connection with certain Galactic sources, and discuss the coincidence of cascades with several bright and flaring blazars., Comment: 10 pages, 3 figures, accepted for publication in MNRAS
- Published
- 2023
- Full Text
- View/download PDF
15. Three-stage Collapse of the Long Gamma-Ray Burst from GRB 160625B Prompt Multiwavelength Observations
- Author
-
Lipunov, V. M., Sadovnichy, V. A., Panasyuk, M. I., Yashin, I. V., Svertilov, S. I., Simakov, S. G., Svinkin, D., Gorbovskoy, E., Lipunova, G. V., Kornilov, V. G., Frederiks, D., Topolev, V., Rebolo, R., Serra, M., Tiurina, N., Minkina, E., Bogomolov, V. V., Bogomolov, A. V., Iyudin, A. F., Chasovnikov, A., Gabovich, A., Tsvetkova, A., Budnev, N. M., Gress, O. A., Antipov, G., Gorbunov, I., Vlasenko, D., Balanutsa, P., Podesta, R., Zhirkov, K., Kuznetsov, A., Vladimirov, V., Podesta, F., Francile, C., Sergienko, Yu., Tlatov, A., Ershova, O., Cheryasov, D., Yurkov, V., and Krylov, A. V.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
This article presents the early results of synchronous multiwavelength observations of one of the brightest gamma-ray bursts (GRBs) GRB 160625B with the detailed continuous fast optical photometry of its optical counterpart obtained by MASTER and with hard X-ray and gamma-ray emission, obtained by the Lomonosov and Konus-Wind spacecraft. The detailed photometry led us to detect the quasi-periodical emission components in the intrinsic optical emission. As a result of our analysis of synchronous multiwavelength observations, we propose a three-stage collapse scenario for this long and bright GRB. We suggest that quasiperiodic fluctuations may be associated with forced precession of a self-gravitating rapidly rotating superdense body (spinar), whose evolution is determined by a powerful magnetic field. The spinar's mass allows it to collapse into a black hole at the end of evolution., Comment: 22 pages, 12 figures, 4 tables, accepted for publication in ApJ
- Published
- 2023
- Full Text
- View/download PDF
16. Orphan optical flare as SOSS emission afterglow, localization in time
- Author
-
Lipunov, V., Kornilov, V., Zhirkov, K., Tyurina, N., Gorbovskoy, E., Vlasenko, D., Simakov, S., Topolev, V., Francile, C., Podesta, R., Podesta, F., Svinkin, D., Budnev, N., Gress, O., Balanutsa, P., Kuznetsov, A., Chasovnikov, A., Serra-Ricart, M., Gabovich, A., Minkina, E., Antipov, G., Svertilov, S., Tlatov, A., Senik, V., Tselik, Yu., Kechin, Ya., and Yurkov, V.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We report on MASTER optical observations of an afterglow-like optical and X-ray transient AT2021lfa/ZTF21aayokph. We detected the initial steady brightening of the transient at 7{\sigma} confidence level. This allowed us to use smooth optical self-similar emission of GRBs model to constrain the explosion time to better than 14 min as well as to estimate its initial Lorentz factor {\Gamma}0 = 20 +/- 10. Taking into consideration the low {\Gamma}0 and non-detection in gamma-rays, we classify this transient as the first failed GRB afterglow., Comment: 8 pages, 5 figures, accepted for publication in MNRAS
- Published
- 2023
- Full Text
- View/download PDF
17. Increasing the sensitivity of the Baikal-GVD neutrino telescope by using external strings of optical modules
- Author
-
Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kebkal, V. K., Khatun, A., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Seitova, D., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Yablokova, Y. V., and Zaborov, D. N.
- Subjects
High Energy Physics - Experiment ,Physics - Instrumentation and Detectors - Abstract
The deployment of the Baikal-GVD deep underwater neutrino telescope is continuing in Lake Baikal. By April 2022, ten clusters of the telescope were put into operation, with 2880 optical modules in total. One of the relevant tasks in this context is to study the possibilities of increasing the efficiency of the detector based on the experience of its operation and the results obtained at other neutrino telescopes in recent years. In this paper, a variant of optimizing the configuration of the telescope is considered, based on the installation of additional strings of optical modules between the clusters (external strings). An experimental version of the external string was installed in Lake Baikal in April 2022. This paper presents a first estimate of the impact of adding external strings on the neutrino detection efficiency, as well as the technical implementation of the detection and data acquisition systems of the external string and first results of its in-situ tests., Comment: 12 pages, in Russian language, 7 figures, 1 Table
- Published
- 2022
18. The role of the magnetic fields in GRB outflows
- Author
-
Jordana-Mitjans, N., Mundell, C. G., Kobayashi, S., Smith, R. J., Guidorzi, C., Steele, I. A., Shrestha, M., Gomboc, A., Marongiu, M., Martone, R., Lipunov, V., Gorbovskoy, E. S., Buckley, D. A. H., Rebolo, R., and Budnev, N. M.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
Gamma-ray bursts (GRBs) are bright extragalactic flashes of gamma-ray radiation and briefly the most energetic explosions in the Universe. Their catastrophic origin (the merger of compact objects or the collapse of massive stars) drives the formation of a newborn compact remnant (black hole or magnetar) that powers two highly relativistic jets. To distinguish between magnetized and baryonic jet models and ultimately determine the power source for these energetic explosions, our team studies the polarization of the light during the first minutes after the explosion (using novel instruments on fully autonomous telescopes around the globe) to directly probe the magnetic field properties in these extragalactic jets. This technology allowed the detection of highly polarized optical light in GRB 120308A and confirmed the presence of mildly magnetized jets with large-scale primordial magnetic fields in a reduced sample of GRBs (e.g. GRB 090102, GRB 110205A, GRB 101112A, GRB 160625B). Here we discuss the observations of the most energetic and first GRB detected at very high TeV energies, GRB 190114C, which opens a new frontier in GRB magnetic field studies suggesting that some jets can be launched highly magnetized and that the collapse and destruction of these magnetic fields at very early times may have powered the explosion itself. Additionally, our most recent polarimetric observations of the jet of GRB 141220A indicate that, when the jetted ejected material is decelerated by the surrounding environment, the magnetic field amplification mechanisms at the front shock (needed to generate the observed synchrotron emission) produce small magnetic domains. These measurements validate theoretical expectations and contrast with previous observations that suggest large magnetic domains in collisionless shocks (i.e. GRB 091208B)., Comment: To appear in the Proceedings of the 16th Marcel Grossmann Meeting (July 5-10, 2021)
- Published
- 2022
19. Diffuse neutrino flux measurements with the Baikal-GVD neutrino telescope
- Author
-
Baikal Collaboration, Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kebkal, V. K., Khatun, A., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Seitova, D., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Yablokova, Y. V., and Zaborov, D. N.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We report on the first observation of the diffuse cosmic neutrino flux with the Baikal-GVD neutrino telescope. Using cascade-like events collected by Baikal-GVD in 2018--2021, a significant excess of events over the expected atmospheric background is observed. This excess is consistent with the high-energy diffuse cosmic neutrino flux observed by IceCube. The null cosmic flux assumption is rejected with a significance of 3.05$\sigma$. Assuming a single power law model of the astrophysical neutrino flux with identical contribution from each neutrino flavor, the following best-fit parameter values are found: the spectral index $\gamma_{astro}$ = $2.58^{+0.27}_{-0.33}$ and the flux normalization $\phi_{astro}$ = 3.04$^{+1.52}_{-1.21}$ per one flavor at 100 TeV., Comment: 9 pages; 5 figures; 2 tables
- Published
- 2022
- Full Text
- View/download PDF
20. TAIGA -- an advanced hybrid detector complex for astroparticle physics and high energy gamma-ray astronomy
- Author
-
Budnev, N. M., Astapov, I., Bezyazeekov, P., Bonvech, E., Borodin, A., Bulan, A., Chernov, D., Chiavassa, A., Dyachok, A., Gafarov, A., Garmash, A., Grebenyuk, V., Gress, E., Gress, O., Gress, T., Grinyuk, A., Grishin, O., Ivanova, A. D., Ivanova, A. L., Kalmykov, N., Kindin, V., Kiryuhin, S., Kokoulin, R., Kompaniets, K., Korosteleva, E., Kozhin, V., Kravchenko, E., Kryukov, A., Kuzmichev, L., Lagutin, A., Lavrova, M., Lemeshev, Y., Lubsandorzhiev, B., Lubsandorzhiev, N., Lukanov, A., Lukyantsev, D., Malakhov, S., Mirgazov, R., Monkhoev, R., Osipova, E., Pakhorukov, A., Pankov, L., Pan, A., Panov, A., Petrukhin, A., Poddubnyi, I., Podgrudkov, D., Ponomareva, V., Popova, E., Postnikov, E., Prosin, V., Ptuskin, V., Pushnin, A., Raikin, R., Razumov, A., Rubtsov, G., Ryabov, E., Samoliga, V., Satyshev, A., Silaev, A., Sidorenkov, A., Skurikhin, A., Sokolov, A., Sveshnikova, L., Tabolenko, V., Tkachev, L., Tanaev, A., Ternovoy, M., Togoo, R., Ushakov, N., Vaidyanathan, A., Volchugov, P., Volkov, N., Voronin, D., Zagorodnikov, A., Zhurov, D., and Yashin, I.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The physical motivations, present status, main results in study of cosmic rays and in the field of gamma-ray astronomy as well future plans of the TAIGA-1 (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) project are presented. The TAIGA observatory addresses ground-based gamma-ray astronomy and astroparticle physics at energies from a few TeV to several PeV, as well as cosmic ray physics from 100 TeV to several EeV. The pilot TAIGA-1 complex is located in the Tunka valley, ~50 km west from the southern tip of the lake Baikal., Comment: Submission to SciPost Phys. Proc., 10 pages, 2 figures
- Published
- 2022
21. The Tunka-Grande scintillation array: current results
- Author
-
Ivanova, A. L., Astapov, I., Bezyazeekov, P., Bonvech, E., Borodin, A., Budnev, N., Bulan, A., Chernov, D., Chiavassa, A., Dyachok, A., Gafarov, A., Garmash, A., Grebenyuk, V., Gress, E., Gress, O., Gress, T., Grinyuk, A., Grishin, O., Ivanova, A. D., Kalmykov, N., Kindin, V., Kiryuhin, S., Kokoulin, R., Kompaniets, K., Korosteleva, E., Kozhin, V., Kravchenko, E., Kryukov, A., Kuzmichev, L., Lagutin, A., Lavrova, M., Lemeshev, Y., Lubsandorzhiev, B., Lubsandorzhiev, N., Lukanov, A., Lukyantsev, D., Malakhov, S., Mirgazov, R., Monkhoev, R., Osipova, E., Pakhorukov, A., Pankov, L., Pan, A., Panov, A., Petrukhin, A., Poddubnyi, I., Podgrudkov, D., Poleschuk, V., Ponomareva, V., Popova, E., Postnikov, E., Prosin, V., Ptuskin, V., Pushnin, A., Raikin, R., Razumov, A., Rubtsov, G., Ryabov, E., Sagan, Y., Samoliga, V., Satyshev, A., Silaev, A., Sidorenkov, A., Skurikhin, A., Sokolov, A., Sveshnikova, L., Tabolenko, V., Tkachev, L., Tanaev, A., Ternovoy, M., Togoo, R., Ushakov, N., Vaidyanathan, A., Volchugov, P., Volkov, N., Voronin, D., Zagorodnikov, A., Zhurov, D., and Yashin, I.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
The Tunka-Grande experiment is a scintillation array with about 0.5 sq.km sensitive area at Tunka Valley, Siberia, for measuring charged particles and muons in extensive air showers (EASs). Tunka-Grande is optimized for cosmic ray studies in the energy range 10 PeV to about 1 EeV, where exploring the composition is of fundamental importance for understanding the transition from galactic to extragalactic origin of cosmic rays. This paper attempts to provide a synopsis of the current results of the experiment. In particular, the reconstruction of the all-particle energy spectrum in the range of 10 PeV to 1 EeV based on experimental data from four observation seasons is presented., Comment: 7 pages, 3 figures, submission to SciPost Phys. Proc
- Published
- 2022
22. Observation of large scale precursor correlations between cosmic rays and earthquakes
- Author
-
Homola, P., Marchenko, V., Napolitano, A., Damian, R., Guzik, R., Alvarez-Castillo, D., Stuglik, S., Ruimi, O., Skorenok, O., Zamora-Saa, J., Vaquero, J. M., Wibig, T., Knap, M., Dziadkowiec, K., Karpiel, M., Sushchov, O., Mietelski, J. W., Gorzkiewicz, K., Zabari, N., Cheminant, K. Almeida, Idźkowski, B., Bulik, T., Bhatta, G., Budnev, N., Kamiński, R., Medvedev, M. V., Kozak, K., Bar, O., Bibrzycki, Ł., Bielewicz, M., Frontczak, M., Kovács, P., Łozowski, B., Miszczyk, J., Niedźwiecki, M., del Peral, L., Piekarczyk, M., Frias, M. D. Rodriguez, Rzecki, K., Smelcerz, K., Sośnicki, T., Stasielak, J., and Tursunov, A. A.
- Subjects
Physics - Geophysics ,Astrophysics - Earth and Planetary Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Solar and Stellar Astrophysics - Abstract
The search for correlations between secondary cosmic ray detection rates and seismic effects has long been a subject of investigation motivated by the hope of identifying a new precursor type that could feed a global early warning system against earthquakes. Here we show for the first time that the average variation of the cosmic ray detection rates correlates with the global seismic activity to be observed with a time lag of approximately two weeks, and that the significance of the effect varies with a periodicity resembling the undecenal solar cycle, with a shift in phase of around three years, exceeding 6 sigma at local maxima. The precursor characteristics of the observed correlations point to a pioneer perspective of an early warning system against earthquakes., Comment: 16 pages, 4 figures in the main article and 11 pages and 4 figures in the Suplementary Material
- Published
- 2022
- Full Text
- View/download PDF
23. Search for Astrophysical Nanosecond Optical Transients with TAIGA-HiSCORE Array
- Author
-
Panov, A. D., Astapov, I. I., Awad, A. K., Beskin, G. M., Bezyazeekov, P. A., Blank, M., Bonvech, E. A., Borodin, A. N., Bruckner, M., Budnev, N. M., Bulan, A. V., Chernov, D. V., Chiavassa, A., Dyachok, A. N., Gafarov, A. R., Garmash, A. Yu., Grebenyuk, V. M., Gress, O. A., Gress, T. I., Grinyuk, A. A., Grishin, O. G., Horns, D., Ivanova, A. L., Kalmykov, N. N., Kindin, V. V., Kiryuhin, S. N., Kokoulin, R. P., Kompaniets, K. G., Korosteleva, E. E., Kozhin, V. A., Kravchenko, E. A., Krivopalova, A. A., Kuzmichev, L. A., Kryukov, A. P., Lagutin, A. A., Lavrova, M. V., Lemeshev, Yu., Lubsandorzhiev, B. K., Lubsandorzhiev, N. B., Lukanov, A. D., Mirgazov, R. R., Mirzoyan, R., Monkhoev, R. D., Osipova, E. A., Pakhorukov, A. L., Pan, A., Pankov, L. V., Petrukhin, A. A., Podgrudkov, D. A., Poleschuk, V. A., Popova, E. G., Porelli, A., Postnikov, E. B., Prosin, V. V., Ptuskin, V. S., Pushnin, A. A., Raikin, R. I., Razumov, A., Rjabov, E., Rubtsov, G. I., Sagan, Y. I., Samoliga, V. S., Sidorenkov, A. Yu., Silaev, A. A., Skurikhin, A. V., Satyshev, I., Sokolov, A. V., Suvorkin, Y., Sveshnikova, L. G., Tabolenko, V. A., Tanaev, A. B., Tarashansky, B. A., Ternovoy, M., Tkachev, L. G., Tluczykont, M., Ushakov, N., Vaidyanathan, A., Volchugov, P. A., Volkov, N. V., Voronin, D., Wischnewski, R., Yashin, I. I., Zagorodnikov, A. V., and Zhurov, D. P.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
A wide-angle Cerenkov array TAIGA-HiSCORE (FOV $\sim$0.6 sr), was originally created as a part of TAIGA installation for high-energy gamma-ray astronomy and cosmic ray physics. Array now consist on nearly 100 optical stations on the area of 1 km$^2$. Due to high accuracy and stability ($\sim$1 ns) of time synchronization of the optical stations the accuracy of EAS arrival direction reconstruction is reached 0.1$^\mathrm{o}$. It was proven that the array can also be used to search for nanosecond events of the optical range. The report discusses the method of searching for optical transients using the HiSCORE array and demonstrates its performance on a real example of detecting signals from an artificial Earth satellite. The search for this short flares in the HiSCORE data of the winter season 2018--2019 is carried out. One candidate for double repeater has been detected, but the estimated probability of random simulation of such a transient by background EAS events is not less than 10%, which does not allow us to say that the detected candidate corresponds to a real astrophysical transient. An upper bound on the frequency of optical spikes with flux density of more than $10^{-4} \mathrm{erg/s/cm}^2$ and a duration of more than 5\,ns is established as $\sim 2 \times 10^{-3}$ events/sr/hour., Comment: 15 pages, 6 figures, reported at the conference ISCRA-2021, Accepted for publication in Physics of Atomic Nuclei
- Published
- 2021
- Full Text
- View/download PDF
24. Estimation of aperture of the Tunka-Rex radio array for cosmic-ray air-shower measurements
- Author
-
Lenok, V., Bezyazeekov, P. A., Budnev, N., Fedorov, O., Gress, O., Grishin, O., Haungs, A., Huege, T., Kazarina, Y., Kleifges, M., Korosteleva, E., Kostunin, D., Kuzmichev, L., Lubsandorzhiev, N., Malakhov, S., Marshalkina, T., Monkhoev, R., Osipova, E., Pakhorukov, A., Pankov, L., Prosin, V., Schröder, F. G., Shipilov, D., and Zagorodnikov, A.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The recent progress in the radio detection technique for air showers paves the path to future cosmic-ray radio detectors. Digital radio arrays allow for a measurement of the air-shower energy and depth of its maximum with a resolution comparable to those of the leading optical detection methods. One of the remaining challenges regarding cosmic-ray radio instrumentation is an accurate estimation of their efficiency and aperture. We present a probabilistic model to address this challenge. We use the model to estimate the efficiency and aperture of the Tunka-Rex radio array. The basis of the model is a parametrization of the radio footprint and a probabilistic treatment of the detection process on both the antenna and array levels. In this way, we can estimate the detection efficiency for air showers as function of their arrival direction, energy, and impact point on the ground. In addition, the transparent internal relationships between the different stages of the air-shower detection process in our probabilistic approach enable to estimate the uncertainty of the efficiency and, consequently, of the aperture of radio arrays. The details of the model will be presented in the contribution., Comment: Proceedings of the 37th International Cosmic Ray Conference (ICRC2021), 12-23 July 2021, Berlin, Germany - Online
- Published
- 2021
- Full Text
- View/download PDF
25. Reconstruction of sub-threshold events of cosmic-ray radio detectors using an autoencoder
- Author
-
Bezyazeekov, P., Shipilov, D., Plokhikh, I., Mikhaylenko, A., Turishcheva, P., Golovachev, S., Sotnikov, V., Sotnikova, E., Budnev, N., Fedorov, O., Gress, O., Grishin, O., Haungs, A., Huege, T., Kazarina, Y., Kleifges, M., Korosteleva, E., Kostunin, D., Kuzmichev, L., Lenok, V., Lubsandorzhiev, N., Malakhov, S., Marshalkina, T., Monkhoev, R., Osipova, E., Pakhorukov, A., Pankov, L., Prosin, V., Schröder, F. G., and Zagorodnikov, A.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Radio detection of air showers produced by ultra-high energy cosmic rays is a cost-effective technique for the next generation of sparse arrays. The performance of this technique strongly depends on the environmental background, which has different constituents, namely anthropogenic radio frequency interference, synchrotron galactic radiation and others. These components have recognizable features, which can help for background suppression. A powerful method for handling this is the application of convolution neural networks with a specific architecture called autoencoder. By suppressing unwanted signatures, the autoencoder keeps the signal-like ones. We have successfully developed and trained an autoencoder, which is now applied to the data from Tunka-Rex. We show the procedures of the training and optimization of the network including benchmarks of different architectures. Using the autoencoder, we improved the standard analysis of Tunka-Rex in order to lower the threshold of the detection. This enables the reconstructing of sub-threshold events with energies lower than 0.1 EeV with satisfactory angular and energy resolutions., Comment: Proceedings of the 37th International Cosmic Ray Conference (ICRC2021), 12-23 July 2021, Berlin, Germany - Online
- Published
- 2021
- Full Text
- View/download PDF
26. Tunka-Rex Virtual Observatory
- Author
-
Lenok, V., Kopylova, O., Wochele, D., Polgart, F., Golovachev, S., Sotnikov, V., Sotnikova, E., Bezyazeekov, P. A., Budnev, N., Fedorov, O., Gress, O., Grishin, O., Haungs, A., Huege, T., Kazarina, Y., Kleifges, M., Korosteleva, E., Kostunin, D., Kuzmichev, L., Lubsandorzhiev, N., Malakhov, S., Marshalkina, T., Monkhoev, R., Osipova, E., Pakhorukov, A., Pankov, L., Prosin, V., Schröder, F. G., Shipilov, D., and Zagorodnikov, A.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Tunka-Rex (Tunka Radio Extension) was a detector for ultra-high energy cosmic rays measuring radio emission for air showers in the frequency band of 30-80 MHz, operating in 2010s. It provided an experimental proof that sparse radio arrays can be a cost-effective technique to measure the depth of shower maximum with resolutions competitive to optical detectors. After the decommissioning of Tunka-Rex, as last phase of its lifecycle and following the FAIR (Findability - Accessibility - Interoperability - Reuse) principles, we publish the data and software under free licenses in the frame of the TRVO (Tunka-Rex Virtual Observatory), which is hosted at KIT under the partnership with the KCDC and GRADLCI projects. We present the main features of TRVO, its interface and give an overview of projects, which benefit from its open software and data., Comment: Proceedings of the 37th International Cosmic Ray Conference (ICRC2021), 12-23 July 2021, Berlin, Germany - Online. arXiv admin note: substantial text overlap with arXiv:1906.10425
- Published
- 2021
- Full Text
- View/download PDF
27. The Baikal-GVD neutrino telescope: search for high-energy cascades
- Author
-
Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannasch, R., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Brudanin, V. B., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fialkovski, S. V., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Katulin, M. S., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Kopański, K. A., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malecki, Pa., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Noga, W., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Sushenok, E. O., Suvorova, O. V., Tabolenko, V. A., Tarashansky, B. A., Yablokova, Y. V., Yakovlev, S. A., and Zaborov, D. N.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Baikal-GVD is a neutrino telescope currently under construction in Lake Baikal. GVD is formed by multi-meganton subarrays (clusters). The design of Baikal-GVD allows one to search for astrophysical neutrinos already at early phases of the array construction. We present here preliminary results of a search for high-energy neutrinos with GVD in 2019-2020., Comment: Submitted to Proc. of the 37th International Cosmic Ray Conference (ICRC 2021), PoS-1144, July 12th -- 23rd, 2021, Online -- Berlin, Germany. 8 pages, 7 figures
- Published
- 2021
28. Development of the Double Cascade Reconstruction Techniques in the Baikal-GVD Neutrino Telescope
- Author
-
Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannasch, R., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Brudanin, V. B., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fialkovski, S. V., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Katulin, M. S., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Kopański, K. A., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malecki, Pa., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Noga, W., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Sushenok, E. O., Suvorova, O. V., Tabolenko, V. A., Tarashansky, B. A., Yablokova, Y. V., Yakovlev, S. A., and Zaborov, D. N.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Instrumentation and Detectors - Abstract
The Baikal-GVD is a neutrino telescope under construction in Lake Baikal. The main goal of the Baikal-GVD is to observe neutrinos via detecting the Cherenkov radiation of the secondary charged particles originating in the interactions of neutrinos. In 2021, the installation works concluded with 2304 optical modules installed in the lake resulting in effective volume approximately 0.4 km$^{3}$. In this paper, the first steps in the development of double cascade reconstruction techniques are presented., Comment: Presented at the 37th International Cosmic Ray Conference (ICRC 2021)
- Published
- 2021
- Full Text
- View/download PDF
29. Positioning system for Baikal-GVD
- Author
-
Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannasch, R., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Brudanin, V. B., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fialkovski, S. V., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Katulin, M. S., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Kopański, K. A., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malecki, Pa., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Noga, W., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Sushenok, E. O., Suvorova, O. V., Tabolenko, V. A., Tarashansky, B. A., Yablokova, Y. V., Yakovlev, S. A., and Zaborov, D. N.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Instrumentation and Detectors - Abstract
Baikal-GVD is a kilometer scale neutrino telescope currently under construction in Lake Baikal. Due to water currents in Lake Baikal, individual photomultiplier housings are mobile and can drift away from their initial position. In order to accurately determine the coordinates of the photomultipliers, the telescope is equipped with an acoustic positioning system. The system consists of a network of acoustic modems, installed along the telescope strings and uses acoustic trilateration to determine the coordinates of individual modems. This contribution discusses the current state of the positioning in Baikal-GVD, including the recent upgrade to the acoustic modem polling algorithm., Comment: Presented at 37th International Cosmic Ray Conference (ICRC 2021)
- Published
- 2021
- Full Text
- View/download PDF
30. An efficient hit finding algorithm for Baikal-GVD muon reconstruction
- Author
-
Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannasch, R., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Brudanin, V. B., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fialkovski, S. V., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Katulin, M. S., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Kopański, K. A., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malecki, Pa., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Noga, W., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Sushenok, E. O., Suvorova, O. V., Tabolenko, V. A., Tarashansky, B. A., Yablokova, Y. V., Yakovlev, S. A., and Zaborov, D. N.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Data Analysis, Statistics and Probability - Abstract
The Baikal-GVD is a large scale neutrino telescope being constructed in Lake Baikal. The majority of signal detected by the telescope are noise hits, caused primarily by the luminescence of the Baikal water. Separating noise hits from the hits produced by Cherenkov light emitted from the muon track is a challenging part of the muon event reconstruction. We present an algorithm that utilizes a known directional hit causality criterion to contruct a graph of hits and then use a clique-based technique to select the subset of signal hits.The algorithm was tested on realistic detector Monte-Carlo simulation for a wide range of muon energies and has proved to select a pure sample of PMT hits from Cherenkov photons while retaining above 90\% of original signal., Comment: Presented at the 37th International Cosmic Ray Conference (ICRC 2021)
- Published
- 2021
- Full Text
- View/download PDF
31. Method and portable bench for tests of the laser optical calibration system components for the Baikal-GVD underwater neutrino Cherenkov telescope
- Author
-
Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannasch, R., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Brudanin, V. B., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fialkovski, L. Fajt f S. V., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Katulin, M. S., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Kopański, K. A., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malecki, Pa., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Noga, W., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Sushenok, E. O., Suvorova, O. V., Tabolenko, V. A., Tarashansky, B. A., Yablokova, Y. V., Yakovlev, S. A., and Zaborov, D. N.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Instrumentation and Detectors - Abstract
The large-scale deep underwater Cherenkov neutrino telescopes like Baikal-GVD, ANTARES or KM3NeT, require calibration and testing methods of their optical modules. These methods usually include laser-based systems which allow to check the telescope responses to the light and for real-time monitoring of the optical parameters of water such as absorption and scattering lengths, which show seasonal changes in natural reservoirs of water. We will present a testing method of a laser calibration system and a set of dedicated tools developed for Baikal- GVD, which includes a specially designed and built, compact, portable, and reconfigurable scanning station. This station is adapted to perform fast quality tests of the underwater laser sets just before their deployment in the telescope structure, even on ice, without darkroom. The testing procedure includes the energy stability test of the laser device, 3D scan of the light emission from the diffuser and attenuation test of the optical elements of the laser calibration system. The test bench consists primarily of an automatic mechanical scanner with a movable Si detector, beam splitter with a reference Si detector and, optionally, Q-switched diode-pumped solid-state laser used for laboratory scans of the diffusers. The presented test bench enables a three-dimensional scan of the light emission from diffusers, which are designed to obtain the isotropic distribution of photons around the point of emission. The results of the measurement can be easily shown on a 3D plot immediately after the test and may be also implemented to a dedicated program simulating photons propagation in water, which allows to check the quality of the diffuser in the scale of the Baikal-GVD telescope geometry., Comment: Presented at the VLVnT - Very Large Volume Neutrino Telescope Workshop, Valencia, 18-21 May 2021
- Published
- 2021
- Full Text
- View/download PDF
32. Methods for the suppression of background cascades produced along atmospheric muon tracks in the Baikal-GVD
- Author
-
Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannasch, R., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Brudanin, V. B., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fialkovski, S. V., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Katulin, M. S., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Kopański, K. A., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malecki, Pa., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Noga, W., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Sushenok, E. O., Suvorova, O. V., Tabolenko, V. A., Tarashansky, B. A., Yablokova, Y. V., Yakovlev, S. A., and Zaborov, D. N.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Instrumentation and Detectors - Abstract
The Baikal-GVD (Gigaton Volume Detector) is a km$^{3}$- scale neutrino telescope located in Lake Baikal. Currently (year 2021) the Baikal-GVD is composed of 2304 optical modules divided to 8 independent detection units, called clusters. Specific neutrino interactions can cause Cherenkov light topology, referred to as a cascade. However, cascade-like events originate from discrete stochastic energy losses along muon tracks. These cascades produce the most abundant background in searching for high-energy neutrino cascade events. Several methods have been developed, optimized, and tested to suppress background cascades., Comment: Presented at the 37th International Cosmic Ray Conference (ICRC 2021)
- Published
- 2021
- Full Text
- View/download PDF
33. Data Quality Monitoring system of the Baikal-GVD experiment
- Author
-
Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannasch, R., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Brudanin, V. B., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fialkovski, S. V., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Katulin, M. S., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Kopański, K. A., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malecki, Pa., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Noga, W., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Sushenok, E. O., Suvorova, O. V., Tabolenko, V. A., Tarashansky, B. A., Yablokova, Y. V., Yakovlev, S. A., and Zaborov, D. N.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Physics - Instrumentation and Detectors - Abstract
The main purpose of the Baikal-GVD Data Quality Monitoring (DQM) system is to monitor the status of the detector and collected data. The system estimates quality of the recorded signals and performs the data validation. The DQM system is integrated with the Baikal-GVD's unified software framework ("BARS") and operates in quasi-online manner. This allows us to react promptly and effectively to the changes in the telescope conditions., Comment: Contribution from the Baikal-GVD Collaboration presented at the 37th International Cosmic Ray Conference, Online - Berlin, Germany, 12-23 July 2021. Proceeding: PoS-ICRC2021-1094
- Published
- 2021
- Full Text
- View/download PDF
34. Multi-messenger and real-time astrophysics with the Baikal-GVD telescope
- Author
-
Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannasch, R., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Brudanin, V. B., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fialkovski, S. V., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Katulin, M. S., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Kopański, K. A., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malecki, Pa., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Noga, W., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Sushenok, E. O., Suvorova, O. V., Tabolenko, V. A., Tarashansky, B. A., Yablokova, Y. V., Yakovlev, S. A., and Zaborov, D. N.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The Baikal-GVD deep underwater neutrino experiment participates in the international multi-messenger program on discovering the astrophysical sources of high energy fluxes of cosmic particles, while being at the stage of deployment with a gradual increase of its effective volume to the scale of a cubic kilometer. In April 2021 the effective volume of the detector has been reached 0.4 km3 for cascade events with energy above 100 TeV generated by neutrino interactions in Lake Baikal. The alarm system in real-time monitoring of the celestial sphere was launched at the beginning of 2021, that allows to form the alerts of two ranks like "muon neutrino" and "VHE cascade". Recent results of fast follow-up searches for coincidences of Baikal-GVD high energy cascades with ANTARES/TAToO high energy neutrino alerts and IceCube GCN messages will be presented, as well as preliminary results of searches for high energy neutrinos in coincidence with the magnetar SGR 1935+2154 activity in period of radio and gamma burst in 2020., Comment: Submitted to Proc. of the 37th International Cosmic Ray Conference (ICRC 2021), PoS-0946, July 12th -- 23rd, 2021, Online -- Berlin, Germany. 8 pages, 5 figures
- Published
- 2021
35. Follow up of the IceCube alerts with the Baikal-GVD telescope
- Author
-
Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannasch, R., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Brudanin, V. B., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fialkovski, S. V., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Katulin, M. S., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Kopański, K. A., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malecki, Pa., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Noga, W., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Sushenok, E. O., Suvorova, O. V., Tabolenko, V. A., Tarashansky, B. A., Yablokova, Y. V., Yakovlev, S. A., and Zaborov, D. N.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The high-energy muon neutrino events of the IceCube telescope, that are triggered as neutrino alerts in one of two probability ranks of astrophysical origin, "gold" and "bronze", have been followed up by the Baikal-GVD in a fast quasi-online mode since September 2020. Search for correlations between alerts and GVD events reconstructed in two modes, muon-track and cascades (electromagnetic or hadronic showers), for the time windows $ \pm $ 1 h and $ \pm $ 12 h does not indicate statistically significant excess of the measured events over the expected number of background events. Upper limits on the neutrino fluence will be presented for each alert., Comment: 5 pages, 5 figures, Proceedings for the VLVnT 2021 conference, submitted to JINST
- Published
- 2021
- Full Text
- View/download PDF
36. The Baikal-GVD neutrino telescope as an instrument for studying Baikal water luminescence
- Author
-
Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannasch, R., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Brudanin, V. B., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fialkovski, S. V., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Katulin, M. S., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Kopański, K. A., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malecki, Pa., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Noga, W., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Sushenok, E. O., Suvorova, O. V., Tabolenko, V. A., Tarashansky, B. A., Yablokova, Y. V., Yakovlev, S. A., and Zaborov, D. N.
- Subjects
High Energy Physics - Phenomenology ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present data on the Baikal water luminescence collected with the Baikal-GVD neutrino telescope. This three-dimensional array of photo-sensors allows the observation of time and spatial variations of the ambient light field. We report on annual increase of luminescence activity in years 2018-2020. We observed a unique event of a highly luminescent layer propagating upwards with a maximum speed of 28 m/day for the first time., Comment: Contribution at 37th International Cosmic Ray Conference (ICRC 2021). arXiv admin note: text overlap with arXiv:1908.06509
- Published
- 2021
- Full Text
- View/download PDF
37. Proposal for fiber optic data acquisition system for Baikal-GVD
- Author
-
Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannasch, R., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Brudanin, V. B., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fialkovski, S. V., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Katulin, M. S., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Kopański, K. A., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malecki, Pa., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Noga, W., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Sushenok, E. O., Suvorova, O. V., Tabolenko, V. A., Tarashansky, B. A., Yablokova, Y. V., Yakovlev, S. A., and Zaborov, D. N.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Instrumentation and Detectors - Abstract
The first stage of the construction of the deep underwater neutrino telescope Baikal-GVD is planned to be completed in 2024. The second stage of the detector deployment is planned to be carried out using a data acquisition system based on fibre optic technologies, which will allow for increased data throughput and more flexible trigger conditions. A dedicated test facility has been built and deployed at the Baikal-GVD site to test the new technological solutions. We present the principles of operation and results of tests of the new data acquisition system., Comment: 4 pages, 1 figure, presented at the Conference VLVnT 2021
- Published
- 2021
- Full Text
- View/download PDF
38. Automatic data processing for Baikal-GVD neutrino observatory
- Author
-
Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannasch, R., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Brudanin, V. B., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fialkovski, S. V., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Katulin, M. S., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Kopański, K. A., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malecki, Pa., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Noga, W., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Sushenok, E. O., Suvorova, O. V., Tabolenko, V. A., Tarashansky, B. A., Yablokova, Y. V., Yakovlev, S. A., and Zaborov, D. N.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Instrumentation and Detectors - Abstract
Baikal-GVD is a gigaton-scale neutrino observatory under construction in Lake Baikal. It currently produces about 100 GB of data every day. For their automatic processing, the Baikal Analysis and Reconstruction software (BARS) was developed. At the moment, it includes such stages as hit extraction from PMT waveforms, assembling events from raw data, assigning timestamps to events, determining the position of the optical modules using an acoustic positioning system, data quality monitoring, muon track and cascade reconstruction, as well as the alert signal generation. These stages are implemented as C++ programs which are executed sequentially one after another and can be represented as a directed acyclic graph. The most resource-consuming programs run in parallel to speed up processing. A separate Python package based on the luigi package is responsible for program execution control. Additional information such as the program execution status and run metadata are saved into a central database and then displayed on the dashboard. Results can be obtained several hours after the run completion., Comment: Presented at the 37th International Cosmic Ray Conference (ICRC 2021)
- Published
- 2021
- Full Text
- View/download PDF
39. Measuring muon tracks in Baikal-GVD using a fast reconstruction algorithm
- Author
-
Collaboration, Baikal-GVD, Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannasch, R., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Brudanin, V. B., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fialkovski, S. V., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Katulin, M. S., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Kopański, K. A., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malecki, Pa., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Noga, W., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Sushenok, E. O., Suvorova, O. V., Tabolenko, V. A., Tarashansky, B. A., Yablokova, Y. V., Yakovlev, S. A., and Zaborov, D. N.
- Subjects
High Energy Physics - Experiment ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The Baikal Gigaton Volume Detector (Baikal-GVD) is a km$^3$-scale neutrino detector currently under construction in Lake Baikal, Russia. The detector consists of several thousand optical sensors arranged on vertical strings, with 36 sensors per string. The strings are grouped into clusters of 8 strings each. Each cluster can operate as a stand-alone neutrino detector. The detector layout is optimized for the measurement of astrophysical neutrinos with energies of $\sim$ 100 TeV and above. Events resulting from charged current interactions of muon (anti-)neutrinos will have a track-like topology in Baikal-GVD. A fast $\chi^2$-based reconstruction algorithm has been developed to reconstruct such track-like events. The algorithm has been applied to data collected in 2019 from the first five operational clusters of Baikal-GVD, resulting in observations of both downgoing atmospheric muons and upgoing atmospheric neutrinos. This serves as an important milestone towards experimental validation of the Baikal-GVD design. The analysis is limited to single-cluster data, favoring nearly-vertical tracks., Comment: 15 pages, 6 figures, 1 table, to be published in Eur. Phys. J. C
- Published
- 2021
- Full Text
- View/download PDF
40. The primary cosmic-ray energy spectrum measured with the Tunka-133 array
- Author
-
Budnev, N. M., Chiavassa, A., Gress, O. A., Gress, T. I., Dyachok, A. N., Karpov, N. I., Kalmykov, N. N., Korosteleva, E. E., Kozhin, V. A., Kuzmichev, L. A., Lubsandorzhiev, B. K., Lubsandorzhiev, N. B., Mirgazov, R. R., Osipova, E. A., Panasyuk, M. I., Pankov, L. V., Popova, E. G., Prosin, V. V., Ptuskin, V. S., Semeney, Yu. A., Silaev, A. A., Skurikhin, A. V., Spiering, C., and Sveshnikova, L. G.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The EAS Cherenkov light array Tunka-133, with $\sim$ 3 km$^2$ geometric area, is taking data since 2009.The array permits a detailed study of energy spectrum and mass composition of cosmic rays in the energy range from $6\cdot 10^{15}$ to $10^{18}$ eV. We describe the methods of time and amplitude calibration of the array and the methods of EAS parameters reconstruction. We present the all-particle energy spectrum, based on 7 seasons of operation., Comment: 12 pages,18 figures
- Published
- 2021
- Full Text
- View/download PDF
41. Optical Observations Reveal Strong Evidence for High Energy Neutrino Progenitor
- Author
-
Lipunov, V. M., Kornilov, V. G., Zhirkov, K. K., Gorbovskoy, E. S., Budnev, N. M., Buckley, D. A. H., Rebolo, R., Serra-Ricart, M., Podesta, R., Tyurina, N., Gress, O., Sergienko, Yu., Yurkov, V., Gabovich, A., Balanutsa, P., Gorbunov, I., Vlasenko, D., Balakin, F., Topolev, V., Pozdnyakov, A., Kuznetsov, A., Vladimirov, V., Chasovnikov, A., Kuvshinov, D., Grinshpun, V., Minkina, E., Petkov, V. B., Svertilov, S. I., Lopez, C., Podesta, F., Levato, H., Tlatov, A., van Soelen, B., Razzaque, S., and Böttcher, M.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,High Energy Physics - Experiment ,Physics - Applied Physics - Abstract
We present the earliest astronomical observation of a high energy neutrino error box in which its variability was discovered after high-energy neutrinos detection. The one robotic telescope of the MASTER global international network (Lipunov et al. 2010) automatically imaged the error box of the very high-energy neutrino event IceCube-170922A. Observations were carried out in minute after the IceCube-170922A neutrino event was detected by the IceCube observatory at the South Pole. MASTER found the blazar TXS 0506+056 to be in the off-state after one minute and then switched to the on-state no later than two hours after the event. The effect is observed at a 50-sigma significance level. Also we present own unique 16-years light curve of blazar TXS 0506+056 (518 data set)., Comment: 17 pages, 3 figures, 1 Table accepted to The Astrophysical Journal Letters
- Published
- 2020
- Full Text
- View/download PDF
42. Lowly polarized light from a highly magnetized jet of GRB 190114C
- Author
-
Jordana-Mitjans, N., Mundell, C. G., Kobayashi, S., Smith, R. J., Guidorzi, C., Steele, I. A., Shrestha, M., Gomboc, A., Marongiu, M., Martone, R., Lipunov, V., Gorbovskoy, E. S., Buckley, D. A. H., Rebolo, R., and Budnev, N. M.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We report multi-color optical imaging and polarimetry observations of the afterglow of the first TeV- detected gamma-ray burst, GRB 190114C, using RINGO3 and MASTER II polarimeters. Observations begin 31 s after the onset of the GRB and continue until $\sim 7000\,$s post-burst. The light curves reveal a chromatic break at $\sim 400- 500\,$s, with initial temporal decay $\alpha = 1.669 \pm 0.013$ flattening to $\alpha \sim 1$ post-break, which we model as a combination of reverse and forward-shock components, with magnetization parameter $R_{\rm B} \sim 70$. The observed polarization degree decreases from $7.7 \pm 1.1\%$ to $2-4\%$ during $52-109\,$s post-burst and remains steady at this level for the subsequent $\sim 2000$-s, at constant position angle. Broadband spectral energy distribution modeling of the afterglow confirms GRB 190114C is highly obscured (A$_{\rm v, HG} = 1.49 \pm 0.12 \,$mag; N$_{\rm H, HG}= (9.0 \pm 0.3) \times 10^{22}\,$cm$^{-2}$). We interpret the measured afterglow polarization as intrinsically low and dominated by dust, in contrast to ${\rm P} >10\%$ measured previously for other GRB reverse shocks, with a small contribution from polarized prompt photons in the first minute. We test whether 1st and higher-order inverse Compton scattering in a magnetized reverse shock can explain the low optical polarization and the sub-TeV emission but conclude neither is explained in the reverse shock Inverse Compton model. Instead, the unexpectedly low intrinsic polarization degree in GRB 190114C can be explained if large-scale jet magnetic fields are distorted on timescales prior to reverse shock emission., Comment: The full photometry data is available in the journal publication
- Published
- 2019
- Full Text
- View/download PDF
43. Multiwavelength observations of GRB 140629A. A long burst with an achromatic jet break in the optical and X-ray afterglow
- Author
-
Hu, Y. -D., Oates, S. R., Lipunov, V. M., Zhang, B. -B., Castro-Tirado, A. J., Jeong, S., Sánchez-Ramírez, R., Tello, J. C., Cunniffe, R., Gorbovskoy, E., Caballero-García, M. D., Pandey, S. B., Kornilov, V. G., Tyurina, N. V., Kuznetsov, A. S., Balanutsa, P. V., Gress, O. A., Gorbunov, I., Vlasenko, D. M., Vladimirov, V. V., Budnev, N. M., Balakin, F., Ershova, O., Krushinski, V. V., Gabovich, A. V., Yurkov, V. V., Gorosabel, J., Moskvitin, A. S., Burenin, R. A., Sokolov, V. V., Delgado, I., Guziy, S., Fernandez-García, E. J., and Park, I. H.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We investigate the long GRB140629A through multiwavelength observations, which cover optical, infrared and X-rays between 40s and 3yr after the burst, to derive the properties of the dominant jet and its host galaxy. Polarisation observations by the MASTER telescope indicate that this burst is weakly polarised. The optical spectrum contains absorption features, from which we confirm the redshift of the GRB as originating at z=2.276. We performed spectral fitting of the X-rays to optical afterglow data and find there is no strong spectral evolution. We determine the hydrogen column density to be 7.2x10^21cm^-2 along the line of sight. The afterglow in this burst can be explained by a blast wave jet with a long-lasting central engine expanding into a uniform medium in the slow cooling regime. At the end of energy injection, a normal decay phase is observed in both the optical and X-ray bands. An achromatic jet break is also found in the afterglow light curves 0.4d after trigger. We fit the multiwavelength data simultaneously with a model based on a numerical simulation and find that the observations can be explained by a narrow uniform jet in a dense environment with an opening angle of 6.7deg viewed 3.8deg off-axis, which released a total energy of 1.4x10^54erg. Using the redshift and opening angle, we find GRB 140629A follows both the Ghirlanda and Amati relations. From the peak time of the light curve, identified as the onset of the forward shock (181s after trigger), the initial Lorentz factor is constrained in the range 82-118. Fitting the host galaxy photometry, we find the host to be a low mass, star-forming galaxy with a star formation rate of logSFR=1.1^+0.9_-0.4Myr^-1. We obtain a value of the neutral hydrogen density by fitting the optical spectrum, logN(HI)=21.0+-0.3, classifying this host as a damped Lyman-alpha. High ionisation lines are also detected in the spectrum., Comment: 18 pages, 13 figures, 8 tables, accepted for publication in A&A
- Published
- 2019
- Full Text
- View/download PDF
44. Modeling the Aperture of Radio Instruments for Air-Shower Detection
- Author
-
Lenok, V., Bezyazeekov, P., Budnev, N., Fedorov, O., Gress, O., Grishin, O., Haungs, A., Huege, T., Kazarina, Y., Kleifges, M., Korosteleva, E., Kostunin, D., Kuzmichev, L., Lubsandorzhiev, N., Malakhov, S., Marshalkina, T., Monkhoev, R., Osipova, E., Pakhorukov, A., Pankov, L., Prosin, V., Schröder, F. G., Shipilov, D., and Zagorodnikov, A.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Sparse digital antenna arrays constitute a promising detection technique for future large-scale cosmic-ray observatories. It has recently been shown that this kind of instrumentation can provide a resolution of the energy and of the shower maximum on the level of other cosmic-ray detection methods. Due to the dominant geomagnetic nature of the air-shower radio emission in the traditional frequency band of 30 to 80 MHz, the amplitude and polarization of the radio signal strongly depend on the azimuth and zenith angle of the arrival direction. Thus, the estimation of the efficiency and subsequently of the aperture of an antenna array is more complex than for particle or Cherenkov-light detectors. We have built a new efficiency model based on utilizing a lateral distribution function as a shower model, and a probabilistic treatment of the detection process. The model is compared to the data measured by the Tunka Radio Extension (Tunka-Rex), a digital antenna array with an area of about 1 km$^2$ located in Siberia at the Tunka Advanced Instrument for Cosmic rays and Gamma Ray Astronomy (TAIGA). Tunka-Rex detects radio emission of air showers using trigger from air-Cherenkov and particle detectors. The present study is an essential step towards the measurement of the cosmic-ray flux with Tunka-Rex, and is important for radio measurements of air showers in general., Comment: Contribution to the 36th International Cosmic Ray Conference
- Published
- 2019
45. Seven years of Tunka-Rex operation
- Author
-
Kostunin, D., Bezyazeekov, P., Budnev, N., Fedorov, O., Gress, O., Grishin, O., Haungs, A., Huege, T., Kazarina, Y., Kleifges, M., Korosteleva, E., Kuzmichev, L., Lenok, V., Lubsandorzhiev, N., Malakhov, S., Marshalkina, T., Monkhoev, R., Osipova, E., Pakhorukov, A., Pankov, L., Prosin, V., Schröder, F. G., Shipilov, D., and Zagorodnikov, A.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The Tunka Radio Extension (Tunka-Rex) is a digital antenna array located in the Tunka Valley in Siberia, which measures the radio emission of cosmic-ray air-showers with energies up to EeV. Tunka-Rex is externally triggered by the Tunka-133 air-Cherenkov timing array (during nights) and by the Tunka-Grande array of particle detectors (remaining time). These three arrays comprise the cosmic-ray extension of the Tunka Advanced Instrument for cosmic rays and Gamma Astronomy (TAIGA). The configuration and analysis pipeline of Tunka-Rex have significantly changed over its runtime. Density of the antennas was tripled and the pipeline has become more developed forming now sophisticated piece of reconstruction software. During its lifecycle Tunka-Rex has demonstrated that a cost-effective and full duty-cycle radio detector can reconstruct the energy and shower maximum with a precision comparable to optical detectors. Moreover, it was shown that cosmic-ray instruments, that use different detection techniques and are placed in different locations, can be cross-calibrated via their radio extensions. These results show the prospects of application of the radio technique for future large-scale experiments for cosmic-ray and neutrino detection. For the time being Tunka-Rex has ceased active measurements and focuses on the data analysis and publication of corresponding software and data in an open-access data center with online analysis features. In this report we present the current status of the array and give an overview of the results achieved during these years as well as discuss upcoming improvements in instrumentation and data analysis, which can be applied for the future radio arrays., Comment: Presented at the 36th International Cosmic Ray Conference (ICRC 2019)
- Published
- 2019
46. Data Quality Monitoring system in the Baikal-GVD experiment
- Author
-
Collaboratio, Baikal GVD, Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannash, R., Belolaptikov, I. A, Brudanin, V. B., Budnev, N. M., Domogatsky, G. V., Doroshenko, A. A., Dvornicky, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Fajth, L., Fialkovsky, S. V, Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Ivanov, R., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, A. V., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Milenin, M. B., Mirgazov, R. A., Nazari, V., Panfilov, A. I., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rjabov, E. V., Rushay, V. D., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Simkovic, F., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Stekl, I., Suvorova, O. V., Sushenok, E. O., Tabolenko, V. A., Tarashansky, B. A., and Yakovlev, S. A.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
The quality of the incoming experimental data has a significant importance for both analysis and running the experiment. The main point of the Baikal-GVD DQM system is to monitor the status of the detector and obtained data on the run-by-run based analysis. It should be fast enough to be able to provide analysis results to detector shifter and for participation in the global multi-messaging system., Comment: Contribution from the Baikal-GVD Collaboration presented at the 36th International Cosmic Ray Conference, Madison, Wisconsin, USA, 24 July - 1 August 2019. Proceeding: PoS-ICRC2019-0874
- Published
- 2019
47. Quest for detection of a cosmological signal from neutral hydrogen with a digital radio array developed for air-shower measurements
- Author
-
Kostunin, D., Bezyazeekov, P., Budnev, N., Grishin, O., Fedorov, O., Kazarina, Y., Kuzmichev, L., Malakhov, S., Marshalkina, T., Oreshko, V., Pshirkov, M., Rubtsov, G., Sokolov, A., Zagorodnikov, A., and Zhurov, D.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Digital radio arrays are widely used for the low-frequency radio astronomy as well as for detection of air-showers induced by high-energy cosmic rays and neutrinos. Since the radio emission from air-showers forms short broadband pulses with duration of tens nanoseconds, the data acquisition strategies of cosmic-ray and astronomical arrays have significant differences. To perform precise measurement of cosmic rays, the radio array should have absolute amplitude calibration and record the entire electric field on the antenna in the broad frequency range. These requirements are similar to ones defined for the experiments aimed at the detection of weak signal from neutral hydrogen at redshifts of $z$>10, what led us to the application of our experience with Tunka-Rex to this problem. We are developing new experimental setup comprising of four antenna stations, placed on the area of 100 sq.m. Each antenna station consists of two perpendicular loop antennas measuring electric field in the frequency band of 30-80 MHz. The setup records electric fields from all antennas in portions of 50 $\mu$s reaching the spectral resolution of 20 kHz. We expect a flow of redundant data of about 10 GB/day, and plan to exploit this redundancy in order to decrease systematic uncertainty of the measurements by application of digital beam-forming, matched filtering and RFI suppression with neural networks. In the present contribution we describe the design and calibration of the setup, expected performance and data analysis techniques., Comment: Presented at the 36th International Cosmic Ray Conference (ICRC 2019)
- Published
- 2019
48. The optical noise monitoring systems of Lake Baikal environment for the Baikal-GVD telescope
- Author
-
Collaboration, Baikal-GVD, Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannash, R., Belolaptikov, I. A, Brudanin, V. B., Budnev, N. M., Domogatsky, G. V., Doroshenko, A. A., Dvornicky, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Fajth, L., Fialkovsky, S. V, Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Ivanov, R., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, A. V., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Milenin, M. B., Mirgazov, R. A., Nazari, V., Panfilov, A. I., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rjabov, E. V., Rushay, V. D., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Simkovic, F., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Stekl, I., Suvorova, O. V., Sushenok, E. O., Tabolenko, V. A., Tarashansky, B. A., and Yakovlev, S. A.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present data on the luminescence of the Baikal water medium collected with the Baikal-GVD neutrino telescope. This three-dimensional array of light sensors allows the observation of time and spatial variations of the ambient light field. We report on observation of an increase of luminescence activity in 2016 and 2018. On the contrary, we observed practically constant optical noise in 2017. An agreement has been found between two independent optical noise data sets. These are data collected with online monitoring system and the trigger system of the cluster., Comment: Contribution from the Baikal-GVD Collaboration presented at the 36th International Cosmic Ray Conference, Madison, Wisconsin, USA, 24 July - 1 August 2019. Proceeding: PoS-ICRC2019-0875
- Published
- 2019
49. The inter-cluster time synchronization systems within the Baikal-GVD detector
- Author
-
Collaboration, Baikal-GVD, Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannash, R., Belolaptikov, I. A, Brudanin, V. B., Budnev, N. M., Domogatsky, G. V., Doroshenko, A. A., Dvornicky, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Fajth, L., Fialkovsky, S. V, Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Ivanov, R., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, A. V., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Milenin, M. B., Mirgazov, R. A., Nazari, V., Panfilov, A. I., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rjabov, E. V., Rushay, V. D., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Simkovic, F., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Stekl, I., Suvorova, O. V., Sushenok, E. O., Tabolenko, V. A., Tarashansky, B. A., and Yakovlev, S. A.
- Subjects
Physics - Instrumentation and Detectors ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
Currently in Lake Baikal, a new generation neutrino telescope is being deployed: the deep underwater Cherenkov detector of a cubic-kilometer scale Baikal-GVD. Completion of the first stage of the telescope construction is planned for 2021 with the implementation of 9 clusters. Each cluster is a completely independent unit in all the aspects: triggering, calibration, data transfer, etc. A high-energy particle might leave its trace in more than a single cluster. To be able to merge events caused by such a particle in more clusters, the appropriate inter-cluster time synchronization is vital., Comment: Contribution from the Baikal-GVD Collaboration presented at the 36th International Cosmic Ray Conference, Madison, Wisconsin, USA, 24 July - 1 August 2019. Proceeding: PoS-ICRC2019-0877
- Published
- 2019
50. A positioning system for Baikal-GVD
- Author
-
Collaboration, Baikal-GVD, Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannash, R., Belolaptikov, I. A, Brudanin, V. B., Budnev, N. M., Domogatsky, G. V., Doroshenko, A. A., Dvornicky, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Fajth, L., Fialkovsky, S. V, Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Ivanov, R., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, A. V., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Milenin, M. B., Mirgazov, R. A., Nazari, V., Panfilov, A. I., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rjabov, E. V., Rushay, V. D., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Simkovic, F., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Stekl, I., Suvorova, O. V., Sushenok, E. O., Tabolenko, V. A., Tarashansky, B. A., and Yakovlev, S. A.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
A cubic kilometer scale neutrino telescope Baikal-GVD is currently under construction in Lake Baikal. Baikal-GVD is designed to detect Cerenkov radiation from products of astrophysical neutrino interactions with Baikal water by a lattice of photodetectors submerged between the depths of 1275 and 730 m. The detector components are mounted on flexible strings and can drift from their initial positions upwards to tens of meters. This introduces positioning uncertainty which translates into a timing error for Cerenkov signal registration. A spatial positioning system has been developed to resolve this issue. In this contribution, we present the status of this system, results of acoustic measurements and an estimate of positioning error for an individual component., Comment: Contribution from the Baikal-GVD Collaboration presented at the 36th International Cosmic Ray Conference, Madison, Wisconsin, USA, 24 July - 1 August 2019. Proceeding: PoS-ICRC2019-1012
- Published
- 2019
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.