1. Robust Palm-Vein Recognition Using the MMD Filter: Improving SIFT-Based Feature Matching
- Author
-
Perera, Kaveen, Khelifi, Fouad, and Belatreche, Ammar
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,I.4.6 ,I.5.2 - Abstract
A major challenge with palm vein images is that slight movements of the fingers and thumb, or variations in hand posture, can stretch the skin in different areas and alter the vein patterns. This can result in an infinite number of variations in palm vein images for a given individual. This paper introduces a novel filtering technique for SIFT-based feature matching, known as the Mean and Median Distance (MMD) Filter. This method evaluates the differences in keypoint coordinates and computes the mean and median in each direction to eliminate incorrect matches. Experiments conducted on the 850nm subset of the CASIA dataset indicate that the proposed MMD filter effectively preserves correct points while reducing false positives detected by other filtering methods. A comparison with existing SIFT-based palm vein recognition systems demonstrates that the proposed MMD filter delivers outstanding performance, achieving lower Equal Error Rate (EER) values. This article presents an extended author's version based on our previous work, A Keypoint Filtering Method for SIFT based Palm-Vein Recognition., Comment: Our previous work, presented at the 2022 International Conference on Digital Image Computing: Techniques and Applications (DICTA) and published in IEEE Xplore. The code for the MMD filter is available at https://github.com/kaveenperera/MMD_filter under Mozilla Public License Version 2.0
- Published
- 2025
- Full Text
- View/download PDF