The Fraser River Delta (FRD) is a large sedimentary system and home to Metro Vancouver, situated within the unceded territories of several First Nations. This review provides an overview of the geological evolution of the FRD, connecting hydrodynamic processes with sedimentary deposits across its diverse environments, from the river to the delta slope. The study emphasizes the implications of sedimentation and delta evolution for natural hazards and coastal/delta management, pinpointing knowledge gaps. Comprising four main zones--river, delta plain, tidal flats, and delta slope--the FRD is subject to several natural hazards, including subsidence, flooding, earthquakes, liquefaction, and tsunamis. The delta plain, bordering the Fraser River's distributary channels, hosts tidal marshes and flats, including both active and abandoned areas. Active tidal flats like Roberts Bank and Sturgeon Bank receive sediment directly from the Fraser River, while abandoned tidal flats, like those at Boundary Bay and Mud Bay, no longer receive sediment. The tidal flats transition into the delta slope, characterized by sand in the south and mud in the north of the Main Channel. The FRD's susceptibility to hazards necessitates protective measures, with approximately 250 km of dykes shielding the delta plain from river floods and storm surges. Subsidence amplifies the impact of rising sea levels. Earthquakes in the region can induce tsunamis, submarine slope failures, and liquefaction of delta sediments, emphasizing the importance of incorporating sedimentation patterns and delta evolution into management strategies for sustainable urban development, habitat restoration, and coastal defence initiatives. Key words: sedimentology, stratigraphy, deltas, tidal flats, coastal management, natural hazards, 1. Introduction Deltas sit at the nexus of fluvial and marine environments and are a storage place and staging ground for sediment, pollutants, and organic carbon that are transported from [...]