1. Catalyst Halogenation Enables Rapid and Efficient Polymerizations with Visible to Far-Red Light
- Author
-
Stafford, Alex, Ahn, Dowon, Raulerson, Emily K., Chung, Kun-You, Sun, Kaihong, Cadena, Danielle M., Forrister, Elena M., Yost, Shane R., Roberts, Sean T., and Page, Zachariah A.
- Abstract
The driving of rapid polymerizations with visible to near-infrared light will enable nascent technologies in the emerging fields of bio- and composite-printing. However, current photopolymerization strategies are limited by long reaction times, high light intensities, and/or large catalyst loadings. The improvement of efficiency remains elusive without a comprehensive, mechanistic evaluation of photocatalysis to better understand how composition relates to polymerization metrics. With this objective in mind, a series of methine- and aza-bridged boron dipyrromethene (BODIPY) derivatives were synthesized and systematically characterized to elucidate key structure–property relationships that facilitate efficient photopolymerization driven by visible to far-red light. For both BODIPY scaffolds, halogenation was shown as a general method to increase polymerization rate, quantitatively characterized using a custom real-time infrared spectroscopy setup. Furthermore, a combination of steady-state emission quenching experiments, electronic structure calculations, and ultrafast transient absorption revealed that efficient intersystem crossing to the lowest excited triplet state upon halogenation was a key mechanistic step to achieving rapid photopolymerization reactions. Unprecedented polymerization rates were achieved with extremely low light intensities (<1 mW/cm2) and catalyst loadings (<50 μM), exemplified by reaction completion within 60 s of irradiation using green, red, and far-red light-emitting diodes. Halogenated BODIPY photoredox catalysts were additionally employed to produce complex 3D structures using high-resolution visible light 3D printing, demonstrating the broad utility of these catalysts in additive manufacturing.
- Published
- 2020
- Full Text
- View/download PDF