1. Distinctive in-Plane Cleavage Behaviors of Two-Dimensional Layered Materials
- Author
-
Guo, Yao, Liu, Chunru, Yin, Qifang, Wei, Chengrong, Lin, Shenghuang, Hoffman, Tim B., Zhao, Yuda, Edgar, J. H., Chen, Qing, Lau, Shu Ping, Dai, Junfeng, Yao, Haimin, Wong, H.-S. Philip, and Chai, Yang
- Abstract
Mechanical exfoliation from bulk layered crystal is widely used for preparing two-dimensional (2D) layered materials, which involves not only out-of-plane interlayer cleavage but also in-plane fracture. Through a statistical analysis on the exfoliated 2D flakes, we reveal the in-plane cleavage behaviors of six representative layered materials, including graphene, h-BN, 2H phase MoS2, 1T phase PtS2, FePS3, and black phosphorus. In addition to the well-known interlayer cleavage, these 2D layered materials show a distinctive tendency to fracture along certain in-plane crystallography orientations. With theoretical modeling and analysis, these distinct in-plane cleavage behaviors can be understood as a result of the competition between the release of the elastic energy and the increase of the surface energy during the fracture process. More importantly, these in-plane cleavage behaviors provide a fast and noninvasive method using optical microscopy to identify the lattice direction of mechanical exfoliated 2D layered materials.
- Published
- 2016
- Full Text
- View/download PDF