1. On Improved Training of CNN for Acoustic Source Localisation
- Author
-
Vargas, Elizabeth, Hopgood, James R., Brown, Keith, and Subr, Kartic
- Abstract
Convolutional Neural Networks (CNNs) are a popular choice for estimating Direction of Arrival (DoA) without explicitly estimating delays between multiple microphones. The CNN method first optimises unknown filter weights (of a CNN) by using observations and ground-truth directional information. This trained CNN is then used to predict incident directions given test observations. Most existing methods train using spectrally-flat random signals and test using speech. In this paper, which focuses on single source DoA estimation, we find that training with speech or music signals produces a relative improvement in DoA accuracy for a variety of audio classes across 16 acoustic conditions and 9 DoAs, amounting to an average improvement of around 17% and 19% respectively when compared to training with spectrally flat random signals. This improvement is also observed in scenarios in which the speech and music signals are synthesised using, for example, a Generative Adversarial Network (GAN). When the acoustic environments during test and training are similar and reverberant, training a CNN with speech outperforms Generalized Cross Correlation (GCC) methods by about 125%. When the test conditions are different, a CNN performs comparably. This paper takes a step towards answering open questions in the literature regarding the nature of the signals used during training, as well as the amount of data required for estimating DoA using CNNs.
- Published
- 2021
- Full Text
- View/download PDF