1. Unlocking mixed oxides with unprecedented stoichiometries from heterometallic metal-organic frameworks for the catalytic hydrogenation of CO2
- Author
-
Castells-Gil, Javier, Ould-Chikh, Samy, Ramírez, Adrian, Ahmad, Rafia, Prieto, Gonzalo, Gómez, Alberto Rodríguez, Garzón-Tovar, Luis, Telalovic, Selvedin, Liu, Lingmei, Genovese, Alessandro, Padial, Natalia M., Aguilar-Tapia, Antonio, Bordet, Pierre, Cavallo, Luigi, Martí-Gastaldo, Carlos, and Gascon, Jorge
- Abstract
Their complex surface chemistry and high oxygen lattice mobilities place mixed-metal oxides among the most important families of materials. Modulation of stoichiometry in mixed-metal oxides has been shown to be a very powerful tool for tuning optical and catalytic properties. However, accessing different stoichiometries is not always synthetically possible. Here, we show that the thermal decomposition of the recently reported metal-organic framework MUV-101(Fe, Ti) results in the formation of carbon-supported titanomaghemite nanoparticles with an unprecedented Fe/Ti ratio close to 2, not achievable by soft-chemistry routes. The resulting titanomaghemite phase displays outstanding catalytic activity for the production of CO from CO2via the reverse water-gas shift (RWGS) reaction with CO selectivity values of ca. 100% and no signs of deactivation after several days on stream. Theoretical calculations suggest that the reaction proceeds through the formation of COOH∗ species, favoring in this way CO over other byproducts.
- Published
- 2021
- Full Text
- View/download PDF