1. A Biodegradable Polymeric Matrix for the Repair of Annulus Fibrosus Defects in Intervertebral Discs
- Author
-
Saghari Fard, Mohammad R., Krueger, Jan Philipp, Stich, Stefan, Berger, Phil, Kühl, Anja A., Sittinger, Michael, Hartwig, Tony, and Endres, Michaela
- Abstract
Background:: Tissue defects in the annulus fibrosus (AF) due to intervertebral disc (IVD) degeneration or after nucleodiscectomy have little self-healing capacity. To prevent progressive degeneration of the IVD, the AF must be repaired. Biological closure has not yet been achieved and is a challenge for the research community. In this study, a scaffold made of absorbable poly (glycolic acid) (PGA) and hyaluronan (HA) that exhibit excellent biocompatibility and cell colonization properties was used to repair AF defects in an ovine model. Methods:: A partial resection was performed in AF in L3/4 or L4/5 of 10 sheep and PGA-HA scaffolds were implanted on the defects (n = 5), while defects in the control group were left untreated (n = 5). Three months post-operation, the lumbar discs were sectioned and stained with hematoxylin and eosin and safranin-O/fast-green. Histological features including proteoglycan content, annular structure, cellular morphology, blood vessel ingrowth and tear/cleft formation were scored using a modified scoring scheme by 3 investigators and evaluated by a pathologist independently. Results:: The treated AF exhibited significantly enhanced repair tissue structure with signs of proteoglycan formation compared to the untreated group. The median scores were 4.3 for the treated and 9.8 for the untreated group. Cystic degeneration, perivascular infiltration, inflammation and necrosis were only present in the untreated group. Blood vessel ingrowth and tear/cleft formation were increased, though not significant, in the untreated group while cell morphology was comparable in both groups. Conclusion:: PGA-HA scaffolds used for AF closure support repair tissue formation in an ovine lumbar disc defect model.
- Published
- 2022
- Full Text
- View/download PDF