1. High risk genetic variants of human insulin receptor substrate 1(IRS1) infer structural instability and functional interference
- Author
-
Bhattacharjee, Arittra, Pranto, S. M. Al Muied, Ahammad, Ishtiaque, Chowdhury, Zeshan Mahmud, Juliana, Farha Matin, Das, Keshob Chandra, Keya, Chaman Ara, and Salimullah, Md
- Abstract
AbstractInsulin receptor substrate 1(IRS1) is a signaling adapter protein encoded by the IRS1gene. This protein delivers signals from insulin and insulin-like growth factor-1(IGF-1) receptors to the phosphatidylinositol 3-kinases (P13K)/protein kinase B (Akt) and Extracellular signal-regulated kinases (Erk) - Mitogen-activated protein (MAP) kinase pathways, which regulate particular cellular processes. Mutations in this gene have been linked to type 2 diabetes mellitus, a heightened risk of insulin resistance, and an increased likelihood of developing a number of different malignancies. The structure and function of IRS1 could be severely compromised as a result of single nucleotide polymorphism (SNP) type genetic variants. In this study, we focused on identification of the most harmful non-synonymous SNPs (nsSNPs) of the IRS1gene as well as prediction of their structural and functional consequences. Six different algorithms made the initial prediction that 59 of the 1142 IRS1 nsSNPs would have a negative impact on the protein structure. In-depth evaluations detected 26 nsSNPs located inside the functional domains of IRS1. Following that, 16 nsSNPs were identified as more harmful based on conservation profile, hydrophobic interaction, surface accessibility, homology modelling, and inter-atomic interactions. Following an in-depth analysis of protein stability, M249T (rs373826433), I223T (rs1939785175) and V204G (rs1574667052) were identified as three most deleterious SNPs and were subjected to molecular dynamics simulation for further insights. These findings will help us understand the implications for disease susceptibility, cancer progression, and the efficacy of therapeutic development against IRS1gene mutants.Communicated by Ramaswamy H. Sarma
- Published
- 2023
- Full Text
- View/download PDF