1. Spectral method for solving nonlinear wave equations
- Author
-
Qianshun, Chang and Shengchang, Wu
- Abstract
In this paper, we consider the following nonlinear wave equations: $$\begin{array}{l} \frac{{\partial ^2 \phi }}{{\partial t^2 }} - \frac{{\partial ^2 \phi }}{{\partial x^2 }} + \mu ^2 \phi + v^2 \chi ^2 \phi + f\left( {|\phi |^2 } \right)\phi = 0, \\ \frac{{\partial ^2 \phi }}{{\partial t^2 }} - \frac{{\partial ^2 \chi }}{{\partial x^2 }} + \alpha ^2 \chi + v^2 \chi |\phi |^2 + g(\chi ) = 0 \\ \\ \end{array}$$ with the periodic-initial conditions: $$\begin{array}{l} \phi (x---\pi ,t) = \phi (x + \pi ,t), \chi (x---\pi ,t) = \chi (x + \pi ,t), \\ \phi (x,0) = \hat \phi _0 (x), \phi _t (x,0) = \hat \phi _1 (x), \\ \chi (x,0) = \hat \chi _0 (x), \chi _t (x,0) = \hat \chi _1 (x), \\ - \infty< x< \infty , 0 \le t \le T. \\ \end{array}$$
- Published
- 1984
- Full Text
- View/download PDF