1. In-context learning of state estimators
- Author
-
Busetto, R., Breschi, V., Forgione, M., Piga, D., and Formentin, S.
- Abstract
State estimation has a pivotal role in several applications, including but not limited to advanced control design. Especially when dealing with nonlinear systems state estimation is a nontrivial task, often entailing approximations and challenging fine-tuning phases. In this work, we propose to overcome these challenges by formulating an in-context state-estimation problem, enabling us to learn a state estimator for a class of (nonlinear) systems abstracting from particular instances of the state seen during training. To this end, we extend an in-context learning framework recently proposed for system identification, showing via a benchmark numerical example that this approach allows us to (i) use training data directly for the design of the state estimator, (ii) not requiring extensive fine-tuning procedures, while (iii) achieving superior performance compared to state-of-the-art benchmarks.
- Published
- 2024
- Full Text
- View/download PDF