1. DNA High-Throughput Sequencing for Arthropod Gut Content Analysis to Evaluate Effectiveness and Safety of Biological Control Agents
- Author
-
Paula, Débora Pires and Andow, David Alan
- Abstract
The search for effective biological control agents without harmful non-target effects has been constrained by the use of impractical (field direct observation) or imprecise (cage experiments) methods. While advances in the DNA sequencing methods, more specifically the development of high-throughput sequencing (HTS), have been quickly incorporated in biodiversity surveys, they have been slow to be adopted to determine arthropod prey range, predation rate and food web structure, and critical information to evaluate the effectiveness and safety of a biological control agent candidate. The lack of knowledge on how HTS methods could be applied by ecological entomologists constitutes part of the problem, although the lack of expertise and the high cost of the analysis also are important limiting factors. In this review, we describe how the latest HTS methods of metabarcoding and Lazaro, a method to identify prey by mapping unassembled shotgun reads, can serve biological control research, showing both their power and limitations. We explain how they work to determine prey range and also how their data can be used to estimate predation rates and subsequently be translated into food webs of natural enemy and prey populations helping to elucidate their role in the community. We present a brief history of prey detection through molecular gut content analysis and also the attempts to develop a more precise formula to estimate predation rates, a problem that still remains. We focused on arthropods in agricultural ecosystems, but most of what is covered here can be applied to natural systems and non-arthropod biological control candidates as well.
- Published
- 2023
- Full Text
- View/download PDF