1. Food-chain length alters community responses to global change in aquatic systems
- Author
-
Hansson, Lars-Anders, Nicolle, Alice, Granéli, Wilhelm, Hallgren, Per, Kritzberg, Emma, Persson, Anders, Björk, Jessica, Nilsson, P. Anders, and Brönmark, Christer
- Abstract
Synergies between large-scale environmental changes, such as climate change and increased humic content (brownification), will have a considerable impact on future aquatic ecosystems. On the basis of modelling, monitoring and experimental data, we demonstrate that community responses to global change are determined by food-chain length and that the top trophic level, and every second level below, will benefit from climate change, whereas the levels in between will suffer. Hence, phytoplankton, and thereby algal blooms, will benefit from climate change in three-, but not in two-trophic-level systems. Moreover, we show that both phytoplankton (resource) and zooplankton (consumer) advance their spring peak abundances similarly in response to a 3 °C temperature increase; that is, there is no support for a consumer/resource mismatch in a future climate scenario. However, in contrast to other taxa, cyanobacteria—known as toxin-producing nuisance phytoplankton—benefit from a higher temperature and humic content irrespective of the food-chain composition. Our results are mirrored in natural ecosystems. By mechanistically merging present food-chain theory with large-scale environmental and climate changes, we provide a powerful framework for predicting and understanding future aquatic ecosystems and their provision of ecosystem services and water resources.
- Published
- 2013
- Full Text
- View/download PDF