1. T‐DNA integration: a mode of illegitimate recombination in plants.
- Author
-
Mayerhofer, R., Koncz‐Kalman, Z., Nawrath, C., Bakkeren, G., Crameri, A., Angelis, K., Redei, G. P., Schell, J., Hohn, B., and Koncz, C.
- Abstract
Transferred DNA (T‐DNA) insertions of Agrobacterium gene fusion vectors and corresponding insertional target sites were isolated from transgenic and wild type Arabidopsis thaliana plants. Nucleotide sequence comparison of wild type and T‐DNA‐tagged genomic loci showed that T‐DNA integration resulted in target site deletions of 29–73 bp. In those cases where integrated T‐DNA segments turned out to be smaller than canonical ones, the break‐points of target deletions and T‐DNA insertions overlapped and consisted of 5–7 identical nucleotides. Formation of precise junctions at the right T‐DNA border, and DNA sequence homology between the left termini of T‐DNA segments and break‐points of target deletions were observed in those cases where full‐length canonical T‐DNA inserts were very precisely replacing plant target DNA sequences. Aberrant junctions were observed in those transformants where termini of T‐DNA segments showed no homology to break‐points of target sequence deletions. Homology between short segments within target sites and T‐DNA, as well as conversion and duplication of DNA sequences at junctions, suggests that T‐DNA integration results from illegitimate recombination. The data suggest that while the left T‐DNA terminus and both target termini participate in partial pairing and DNA repair, the right T‐DNA terminus plays an essential role in the recognition of the target and in the formation of a primary synapsis during integration.
- Published
- 1991
- Full Text
- View/download PDF