1. Bismuth Single Atoms Regulated Graphite Felt Electrode Boosting High Power Density Vanadium Flow Batteries
- Author
-
Xing, Fei, Fu, Qiang, Xing, Feng, Zhao, Jian, Long, Haoyang, Liu, Tao, and Li, Xianfeng
- Abstract
Vanadium flow batteries (VFBs) are considered one of the most promising candidates for large-scale energy storage. However, VFBs suffer from relatively low power density due to severe electrochemical polarization. Herein, we report Bi single atoms supported by an N-doped carbon-regulated graphite felt electrode (Bi SAs/NC@GF) with high electrocatalytic activity and stability, owing to the greatly improved active sites and optimized Bi–N4configuration. Electrochemical in situ characterization and theoretical calculations elucidate the desolvation process and specific inner sphere reaction mechanism of [V(H2O)6]3+/[V(H2O)6]2+. As a result, a VFB single cell assembled with Bi SAs/NC@GF achieves a much higher energy efficiency of 81.1% at 240 mA cm–2than NC@GF (70.5%). Moreover, a 5 kW VFB stack equipped with Bi SAs/NC@GF is assembled for the first time and ran stably for over 400 cycles. This work confirms that a single-atom catalyst is efficient for scalable VFBs with high power density and low cost.
- Published
- 2024
- Full Text
- View/download PDF