1. Mid-Pliocene glaciation preceded by a 0.5-million-year North African humid period
- Author
-
Amarathunga, Udara, Rohling, Eelco J., Grant, Katharine M., Francke, Alexander, Latimer, James, Klaebe, Robert M., Heslop, David, Roberts, Andrew P., and Hutchinson, David K.
- Abstract
Past North African humid periods caused expanded vegetation over the Sahara, due to northward tropical African rainbelt displacement, opening migration pathways for hominins. Commonly, these precession-timed humid periods ended within 15,000 years due to rainbelt retreat. During North African humid periods, eastern Mediterranean organic-rich layers called sapropels were deposited at least since 8 Myr. Here we combine climate modelling with palaeoclimate proxy data to show that weakened sapropel preservation during the 5.3–3.3 Myr period resulted from nutrient runoff limitation associated with enhanced North African vegetation cover due to a persistently more northward-located African monsoon front, relative to the mid-Pliocene (3.3–3.0 Myr, when glacial intensity increased). Moreover, sapropel absence within the 3.8–3.3 Myr period coincided with maximum monsoon runoff and extensively humid, vegetated conditions throughout North Africa. Our model results indicate that this 0.5-Myr-long pan-North African humid period ended at ~3.3 Myr because of southward monsoon front displacement with Northern Hemisphere glacial intensification. The 3.8–3.3 Myr humid period coincided with the earliest known evidence for hominin coexistence over eastern and central North Africa. We posit that persistent green corridors during this humid phase facilitated early hominin connectivity and migration, expanding their habitat range over the wider North African territory.
- Published
- 2024
- Full Text
- View/download PDF