1. Poly(β-hydroxybutyrate-co-β-hydroxyvalerate) Supports in Vitro Osteogenesis
- Author
-
Kumarasuriyar, A., Jackson, R.A., Grøndahl, L., Trau, M., Nurcombe, V., and Cool, S.M.
- Abstract
Studies have demonstrated that polymeric biomaterials have the potential to support osteoblast growth and development for bone tissue repair. Poly(β-hydroxybutyrate-co-β-hydroxyvalerate) (PHBV), a bioabsorbable, biocompatible polyhydroxy acid polymer, is an excellent candidate that, as yet, has not been extensively investigated for this purpose. As such, we examined the attachment characteristics, self-renewal capacity, and osteogenic potential of osteoblast-like cells (MC3T3-E1 S14) when cultured on PHBV films compared with tissue culture polystyrene (TCP). Cells were assayed over 2 weeks and examined for changes in morphology, attachment, number and proliferation status, alkaline phosphatase (ALP) activity, calcium accumulation, nodule formation, and the expression of osteogenic genes. We found that these spindle-shaped MC3T3-E1 S14 cells made cell–cell and cell–substrate contact. Time-dependent cell attachment was shown to be accelerated on PHBV compared with collagen and laminin, but delayed compared with TCP and fibronectin. Cell number and the expression of ALP, osteopontin, and pro-collagen α1(I) mRNA were comparable for cells grown on PHBV and TCP, with all these markers increasing over time. This demonstrates the ability of PHBV to support osteoblast cell function. However, a lag was observed for cells on PHBV in comparison with those on TCP for proliferation, ALP activity, and cbfa-1 mRNA expression. In addition, we observed a reduction in total calcium accumulation, nodule formation, and osteocalcin mRNA expression. It is possible that this cellular response is a consequence of the contrasting surface properties of PHBV and TCP. The PHBV substrate used was rougher and more hydrophobic than TCP. Although further substrate analysis is required, we conclude that this polymer is a suitable candidate for the continued development as a biomaterial for bone tissue engineering.
- Published
- 2005
- Full Text
- View/download PDF