1. Toxicity mechanism-based prodrugs: glutathione-dependent bioactivation as a strategy for anticancer prodrug design
- Author
-
Zhang, Xin-Yu and Elfarra, Adnan A.
- Abstract
ABSTRACTIntroduction: 6-Mercaptopurine (6-MP) and 6-thioguanine (6-TG), two anticancer drugs, have high systemic toxicity due to a lack of target specificity. Therefore, increasing target selectivity should improve drug safety.Areas covered: The authors examined the hypothesis that new prodrug designs based upon mechanisms of kidney-selective toxicity of trichloroethylene would reduce systemic toxicity and improve selectivity to kidney and tumor cells. Two approaches specifically were investigated. The first approach was based upon bioactivation of trichloroethylene-cysteine S-conjugate by renal cysteine S-conjugate β-lyases. The prodrugs obtained were kidney-selective but exhibited low turnover rates. The second approach was based on the toxic mechanism of trichloroethylene-cysteine S-conjugate sulfoxide, a Michael acceptor that undergoes rapid addition-elimination reactions with biological thiols.Expert opinion: Glutathione-dependent Michael addition-elimination reactions appear to be an excellent strategy to design highly efficient anticancer drugs. Targeting glutathione could be a promising approach for the development of anticancer prodrugs because cancer cells usually upregulate glutathione biosynthesis and/or glutathione S-transferases expression.
- Published
- 2018
- Full Text
- View/download PDF