1. Projection-capacitor discharge resistance welding of 430 stainless steel and 14YWT
- Author
-
Lienert, T.J., Lear, C.R., Steckley, T.E., Lindamood, L.R., Gould, J.E., Maloy, S.A., and Eftink, B.P.
- Abstract
Efforts to advance structural materials with improved properties and service life in support of next generation designs for nuclear reactor components have recently led to development of nano-ferritic alloys (NFAs) containing nano-oxides such as 14YWT. A key enabling technology to realizing the useful properties of NFAs during service involves preservation of the oxide dispersions during joining. Solid-state welding processes, such as projection-capacitor discharge resistance welding (P-CDRW) used here, are well suited for joining NFAs while retaining the oxides. Due to limitations in the supply of 14YWT NFA material, initial experiments were conducted using 430 stainless steel as an inexpensive surrogate material. The goal of the surrogate experiments was to scale suitable parameters from 430 welds to 14YWT using ratios of key properties for the two materials including flow stress at temperatures and strain rates relevant to hot working. Results indicated that weld displacement increased with increasing weld force and increasing weld energy for all other variables held constant. Weld energy appeared to have a larger effect on displacement than weld force for the sample geometry used here. Appropriate process parameters (no melting) were established for the two materials. The process window for the 430 material extended from 350 J to 600 J of energy for weld forces of 2.2 kN and 3.1 kN. Suitable parameters for 14YWT were similar in terms of energy but for force levels of 3.1 kN and 4.0 kN. Displacement for both materials ranged from 150 μm to 300 μm for welds that did not experience melting. Simple heat flow analysis confirmed that the extent of displacement was limited by the characteristic thermal distance determined from thermo-physical properties and the weld current rise time. The higher flow stresses of 14YWT relative to 430 were apparently offset by greater heating due to higher electrical resistivity near the projection tip and lesser heat conduction from the projection tip owing to lower thermal conductivity. Based on the results presented here and in our companion paper. The P-CDRW process appears capable of successfully joining the 14YWT NFA while retaining the microstructures and properties of the original material.
- Published
- 2022
- Full Text
- View/download PDF