1. Preparation and electrochemical performance of porous carbon derived from polypyrrole
- Author
-
Wu, Lili, Chen, Xinguo, Ding, Chang, Wang, Pitao, and Luo, Heming
- Abstract
Supercross-linked polymers are widely used as carbon precursor materials due to their abundant carbon sources and low cost. In this paper, a supercross-linked polymer was prepared by the solvothermal method. The supercross-linked polymer as a precursor and the PPyC-800-A was synthesized by activating this with KOH. The microstructure, structure, and electrochemical performances of porous carbon PPyC-800-A were studied at different of temperature and carbon alkali ratio. According to the results, the porous carbon PPyC-800-1:2 is mainly composed of a stack of spherical particles with a high surface area of 1427.03 m2g−1, an average pore diameter of 2.32 nm, and a high specific capacitance of 217.7 F g−1at a current density of 1.0 A g−1in a 6 M KOH electrolyte. It’s retention rate is 97.58% after 5000 constant current charges and discharges. With a specific capacitance decay rate of 21.91 percent, an energy density of 11.96 Wh kg−1, and a power density of 500.0 W kg−1, the current density rises from 1.0 A g−1to 10.0 A g−1, exhibiting remarkable electrochemical properties, cycling stability, and energy production performance This study contributes experimental ideas to the field of supercross-linked polymer-derived carbon materials and energy storage.
- Published
- 2023
- Full Text
- View/download PDF