1. Logical quantum processor based on reconfigurable atom arrays
- Author
-
Bluvstein, Dolev, Evered, Simon J., Geim, Alexandra A., Li, Sophie H., Zhou, Hengyun, Manovitz, Tom, Ebadi, Sepehr, Cain, Madelyn, Kalinowski, Marcin, Hangleiter, Dominik, Bonilla Ataides, J. Pablo, Maskara, Nishad, Cong, Iris, Gao, Xun, Sales Rodriguez, Pedro, Karolyshyn, Thomas, Semeghini, Giulia, Gullans, Michael J., Greiner, Markus, Vuletić, Vladan, and Lukin, Mikhail D.
- Abstract
Suppressing errors is the central challenge for useful quantum computing1, requiring quantum error correction (QEC)2–6for large-scale processing. However, the overhead in the realization of error-corrected ‘logical’ qubits, in which information is encoded across many physical qubits for redundancy2–4, poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Using logical-level control and a zoned architecture in reconfigurable neutral-atom arrays7, our system combines high two-qubit gate fidelities8, arbitrary connectivity7,9, as well as fully programmable single-qubit rotations and mid-circuit readout10–15. Operating this logical processor with various types of encoding, we demonstrate improvement of a two-qubit logic gate by scaling surface-code6distance from d= 3 to d= 7, preparation of colour-code qubits with break-even fidelities5, fault-tolerant creation of logical Greenberger–Horne–Zeilinger (GHZ) states and feedforward entanglement teleportation, as well as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks16,17, we realize computationally complex sampling circuits18with up to 48 logical qubits entangled with hypercube connectivity19with 228 logical two-qubit gates and 48 logical CCZ gates20. We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical-qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling21,22. These results herald the advent of early error-corrected quantum computation and chart a path towards large-scale logical processors.
- Published
- 2024
- Full Text
- View/download PDF