1. Destructuration of Canola Protein Gels during In Situ Gastrointestinal Digestion Studied by X-ray Scattering
- Author
-
Napieraj, Maja, Lutton, Evelyne, Perez, Javier, Boué, François, and Brûlet, Annie
- Abstract
We are studying the destructuration of canola protein gels, as a solid food model, during in situ gastrointestinal digestion using synchrotron small-angle X-ray scattering (SAXS). Digestion of two gels, prepared by heating pH 8 and pH 11 solutions, was carried out by diffusion of enzymatic juices into the gel from the top of the capillary and monitored for several tens of hours. Very similar time evolutions of SAXS curves occur at different positions of the gel in the capillary, with a delay determined by the distance from the surface initially in contact with the digestive juice. The main phenomena observed are (i) at the scale of the protein conformation (1–5 nm). The scattering curve is a power law, the exponent of which measures the compactness (related to the degree of unfolding). It can be plotted as a function of the characteristic size of proteins/and interprotein distances and as a function of the scattering intensity. Such diagrams clearly show successive digestion processes. For the pH 11 gel, in which proteins are initially hardly unfolded, the digestive processes are unfolding (1st step), recompaction–aggregation phenomena (2nd step) due to gastrointestinal pH conditions and enzymatic cleavage, further unfolding–disaggregation (3rd step), and final protein cleavage (4th step) down to small peptides. For the pH 8 gel, proteins are initially unfolded, and only the last three steps are observed, showing the influence of easier access for the enzymes. (ii) At the scale of large aggregates (10–50 nm), we observe for both gels a decrease in the size and/or number of these aggregates during digestion and alteration of their interfaces. (iii) At the scale of the secondary protein structure, wide-angle X-ray scattering is very useful for detecting the degradation of the secondary protein structure at different steps of digestion.
- Published
- 2024
- Full Text
- View/download PDF