1. Numerical simulation of shock response of disk-suspension-slider air bearing systems in hard disk drives
- Author
-
Zeng, Q. H. and Bogy, D. B.
- Abstract
Abstract: As non-traditional applications of hard disk drives emerge, their mechanical robustness during the operating state is of greater concern. A procedure for simulating the shock responses of a disk-suspension-slider air bearing system is proposed in this paper. A finite element model of the system is developed and modified, and it is used to obtain the dynamic normal load and moments applied to the air bearing slider. The dynamic load and moments are then used as input data for the air bearing dynamic simulator to calculate the dynamic flying attitudes. We obtain not only the responses of the structural components, but also the responses of the air bearing slider. The procedure is convenient for practical application, because it separates the work into two essentially uncoupled steps. It is used to simulate the shock response of a drive. The system modeled is linear if the load dimple of the suspension maintains contact with the slider, but it is non-linear if the dimple separates due to a strong shock. The air bearing has different responses for upward and downward shocks. Slider-asperity contacts occur when a strong shock is applied.
- Published
- 2002
- Full Text
- View/download PDF