1. Targeting test environments and rust-resistant genotypes in lentils (Lens culinaris) by using heritability-adjusted biplot analysis
- Author
-
Parihar, A. K., Basandrai, Ashwani K., Kushwaha, K. P. S., Chandra, S., Singh, K. D., Bal, R. S., Saxena, D., Singh, Deepak, and Gupta, Sanjeev
- Abstract
Lentil rust incited by the fungus Uromyces viciae-fabae is a major impedance to lentil (Lens culinaris Medik.) production globally. Host-plant resistance is the most reliable, efficient and viable strategy among the various approaches to control this disease. In this study, 26 lentil genotypes comprising advanced breeding lines and released varieties along with a susceptible check were evaluated consecutively for rust resistance under natural incidence for two years and at five test locations in India. A heritability-adjusted genotype main effect plus genotype×environment interaction (HA-GGE) biplot program was used to analyse disease-severity data. The results revealed that, among the interactive factors, the GE interaction had the greatest impact (27.81%), whereas environment and genotype showed lower effects of 17.2% and 20.98%, respectively. The high GE variation made possible the evaluation of the genotypes at different test locations. The HA-GGE biplot method identified two sites (Gurdaspur and Pantnagar) as the ideal test environments in this study, with high efficiency for selection of durable and rust-resistant genotypes, whereas two other sites (Kanpur and Faizabad) were the least desirable test environments. In addition, the HA-GGE biplot analysis identified three distinct mega-environments for rust severity in India. Furthermore, the analysis identified three genotypes, DPL 62, PL 165 and PL 157, as best performing and durable for rust resistance in this study. The HA-GGE biplot analysis recognised the best test environments, restructured the ecological zones for lentil-rust testing, and identified stable sources of resistance for lentil rust disease, under multi-location and multi-year trials.
- Published
- 2018
- Full Text
- View/download PDF