6 results on '"Abánades Lázaro, Isabel"'
Search Results
2. Heteroepitaxial MOF-on-MOF Photocatalyst for Solar-Driven Water Splitting
- Author
-
Le Huec, Thibaut, López-Francés, Antón, Abánades Lázaro, Isabel, Navalón, Sergio, Baldoví, Herme G., and Giménez-Marqués, Mónica
- Abstract
Assembly of different metal–organic frameworks (MOFs) into hybrid MOF-on-MOF heterostructures has been established as a promising approach to develop synergistic performances for a variety of applications. Here, we explore the performance of a MOF-on-MOF heterostructure by epitaxial growth of MIL-88B(Fe) onto UiO-66(Zr)–NH2nanoparticles. The face-selective design and appropriate energy band structure alignment of the selected MOF constituents have permitted its application as an active heterogeneous photocatalyst for solar-driven water splitting. The composite achieves apparent quantum yields for photocatalytic overall water splitting at 400 and 450 nm of about 0.9%, values that compare much favorably with previous analogous reports. Understanding of this high activity has been gained by spectroscopic and electrochemical characterization together with scanning transmission and transmission electron microscopy (STEM, TEM) measurements. This study exemplifies the possibility of developing a MOF-on-MOF heterostructure that operates under a Z-scheme mechanism and exhibits outstanding activity toward photocatalytic water splitting under solar light.
- Published
- 2024
- Full Text
- View/download PDF
3. Design of a Functionalized Metal–Organic Framework System for Enhanced Targeted Delivery to Mitochondria
- Author
-
Haddad, Salame, Abánades Lázaro, Isabel, Fantham, Marcus, Mishra, Ajay, Silvestre-Albero, Joaquin, Osterrieth, Johannes W. M., Kaminski Schierle, Gabriele S., Kaminski, Clemens F., Forgan, Ross S., and Fairen-Jimenez, David
- Abstract
Mitochondria play a key role in oncogenesis and constitute one of the most important targets for cancer treatments. Although the most effective way to deliver drugs to mitochondria is by covalently linking them to a lipophilic cation, the in vivodelivery of free drugs still constitutes a critical bottleneck. Herein, we report the design of a mitochondria-targeted metal–organic framework (MOF) that greatly increases the efficacy of a model cancer drug, reducing the required dose to less than 1% compared to the free drug and ca. 10% compared to the nontargeted MOF. The performance of the system is evaluated using a holistic approach ranging from microscopy to transcriptomics. Super-resolution microscopy of MCF-7 cells treated with the targeted MOF system reveals important mitochondrial morphology changes that are clearly associated with cell death as soon as 30 min after incubation. Whole transcriptome analysis of cells indicates widespread changes in gene expression when treated with the MOF system, specifically in biological processes that have a profound effect on cell physiology and that are related to cell death. We show how targeting MOFs toward mitochondria represents a valuable strategy for the development of new drug delivery systems.
- Published
- 2020
- Full Text
- View/download PDF
4. Surface-Functionalization of Zr-Fumarate MOF for Selective Cytotoxicity and Immune System Compatibility in Nanoscale Drug Delivery
- Author
-
Abánades Lázaro, Isabel, Haddad, Salame, Rodrigo-Muñoz, Jose M., Marshall, Ross J., Sastre, Beatriz, del Pozo, Victoria, Fairen-Jimenez, David, and Forgan, Ross S.
- Abstract
Metal–organic frameworks (MOFs), network structures wherein metal ions or clusters link organic ligands into porous materials, are being actively researched as nanoscale drug delivery devices as they offer tunable structures with high cargo loading that can easily be further functionalized for targeting and enhanced physiological stability. The excellent biocompatibility of Zr has meant that its MOFs are among the most studied to date, in particular the archetypal Zr terephthalate UiO-66. In contrast, the isoreticular analog linked by fumarate (Zr-fum) has received little attention, despite the endogenous linker being part of the Krebs cycle. Herein, we report a comprehensive study of Zr-fum in the context of drug delivery. Reducing particle size is shown to increase uptake by cancer cells while reducing internalization by macrophages, immune system cells that remove foreign objects from the bloodstream. Zr-fum is compatible with defect loading of the drug dichloroacetate (DCA) as well as surface modification during synthesis, through coordination modulation and postsynthetically. DCA-loaded, PEGylated Zr-fum shows selective in vitro cytotoxicity toward HeLa and MCF-7 cancer cells, likely as a consequence of its enhanced caveolae-mediated endocytosis compared to uncoated precursors, and it is well tolerated by HEK293 kidney cells, J774 macrophages, and human peripheral blood lymphocytes. Compared to UiO-66, Zr-fum is more efficient at transporting the drug mimic calcein into HeLa cells, and DCA-loaded, PEGylated Zr-fum is more effective at reducing HeLa and MCF-7 cell proliferation than the analogous UiO-66 sample. In vitro examination of immune system response shows that Zr-fum samples induce less reactive oxygen species than UiO-66 analogs, possibly as a consequence of the linker being endogenous, and do not activate the C3 and C4 complement cascade pathways, suggesting that Zr-fum can avoid phagocytic activation. The results show that Zr-fum is an attractive alternative to UiO-66 for nanoscale drug delivery, and that a wide range of in vitro experiments is available to greatly inform the design of drug delivery systems prior to early stage animal studies.
- Published
- 2018
- Full Text
- View/download PDF
5. Mechanistic Investigation into the Selective Anticancer Cytotoxicity and Immune System Response of Surface-Functionalized, Dichloroacetate-Loaded, UiO-66 Nanoparticles
- Author
-
Abánades Lázaro, Isabel, Haddad, Salame, Rodrigo-Muñoz, José M., Orellana-Tavra, Claudia, del Pozo, Victoria, Fairen-Jimenez, David, and Forgan, Ross S.
- Abstract
The high drug-loading and excellent biocompatibilities of metal–organic frameworks (MOFs) have led to their application as drug-delivery systems (DDSs). Nanoparticle surface chemistry dominates both biostability and dispersion of DDSs while governing their interactions with biological systems, cellular and/or tissue targeting, and cellular internalization, leading to a requirement for versatile and reproducible surface functionalization protocols. Herein, we explore not only the effect of introducing different surface functionalities to the biocompatible Zr-MOF UiO-66 but also the efficacy of three surface modification protocols: (i) direct attachment of biomolecules [folic acid (FA) and biotin (Biot)] introduced as modulators for UiO-66 synthesis, (ii) our previously reported “click-modulation” approach to covalently attach polymers [poly(ethylene glycol) (PEG), poly-l-lactide, and poly-N-isopropylacrylamide] to the surface of UiO-66 through click chemistry, and (iii) surface ligand exchange to postsynthetically coordinate FA, Biot, and heparin to UiO-66. The innovative use of a small molecule with metabolic anticancer activity, dichloroacetate (DCA), as a modulator during synthesis is described, and it is found to be compatible with all three protocols, yielding surface-coated, DCA-loaded (10–20 w/w %) nano-MOFs (70–170 nm). External surface modification generally enhances the stability and colloidal dispersion of UiO-66. Cellular internalization routes and efficiencies of UiO-66 by HeLa cervical cancer cells can be tuned by surface chemistry, and anticancer cytotoxicity of DCA-loaded MOFs correlates with the endocytosis efficiency and mechanisms. The MOFs with the most promising coatings (FA, PEG, poly-l-lactide, and poly-N-isopropylacrylamide) were extensively tested for selectivity of anticancer cytotoxicity against MCF-7 breast cancer cells and HEK293 healthy kidney cells as well as for cell proliferation and reactive oxygen species production against J774 macrophages and peripheral blood lymphocytes isolated from the blood of human donors. DCA-loaded, FA-modified UiO-66 selectively kills cancer cells without harming healthy ones or provoking immune system response in vitro, suggesting a significant targeting effect and great potential in anticancer drug delivery. The results provide mechanistic insight into the design and functionalization of MOFs for drug delivery and underline the availability of various in vitro techniques to potentially minimize early-stage in vivo animal studies following the three Rs: reduction, refinement, and replacement.
- Published
- 2018
- Full Text
- View/download PDF
6. Tuning the Endocytosis Mechanism of Zr-Based Metal–Organic Frameworks through Linker Functionalization
- Author
-
Orellana-Tavra, Claudia, Haddad, Salame, Marshall, Ross J., Abánades Lázaro, Isabel, Boix, Gerard, Imaz, Inhar, Maspoch, Daniel, Forgan, Ross S., and Fairen-Jimenez, David
- Abstract
A critical bottleneck for the use of metal–organic frameworks (MOFs) as drug delivery systems has been allowing them to reach their intracellular targets without being degraded in the acidic environment of the lysosomes. Cells take up particles by endocytosis through multiple biochemical pathways, and the fate of these particles depends on these routes of entry. Here, we show the effect of functional group incorporation into a series of Zr-based MOFs on their endocytosis mechanisms, allowing us to design an efficient drug delivery system. In particular, naphthalene-2,6-dicarboxylic acid and 4,4′-biphenyldicarboxylic acid ligands promote entry through the caveolin-pathway, allowing the particles to avoid lysosomal degradation and be delivered into the cytosol and enhancing their therapeutic activity when loaded with drugs.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.