1. Numerical study on free vibration characteristics of encastre clinched joints
- Author
-
He, Xiaocong, Ding, Yanfang, Yang, Huiyan, Xing, Baoying, He, Xiaocong, Ding, Yanfang, Yang, Huiyan, and Xing, Baoying
- Abstract
The present paper deals with free vibration analysis of single lap encastre clinched joints using three dimensional finite element methods. The focus of the analysis is to reveal the influence on the natural frequencies, natural frequency ratios and mode shapes of these joints caused by variations in the material properties of the sheet materials. Numerical examples show that natural frequencies of single lap encastre clinched joints increase significantly as the Young’s modulus of the sheets increase, but only slight changes are encountered for variations of Poisson’s ratios. The mode shapes show that there are different deformations in the jointed section of clinched joints. These different deformations may cause different natural frequency values and different stress distributions. In both cases of transverse free vibration and torsional free vibration, odd mode shapes were found to be symmetrical about the mid-length position and even mode shaps were anti-symmetrical. The amplitudes of vibration at the mid-length of the joints are different for the odd and even modes. The geometry of the lap section is therefore very important and has a very significant effect on the dynamic response of the single lap encastre clinched joints. The main goal of this paper is to give an outline of free vibration characteristics of encastre clinched joints by finite element methods and to provide a basis for further experimental research.
- Published
- 2014