12 results on '"Tomas, Jean"'
Search Results
2. ERP et conduite des changements : Alignement, sélection et déploiement
- Author
-
Tomas, Jean-Louis, Gal, Yossi, Tomas, Jean-Louis, Tomas, Jean-Louis, Gal, Yossi, and Tomas, Jean-Louis
- Abstract
De plus en plus d'entreprises migrent leurs applications informatiques internes vers des grands "progiciels intégrés" (ERP) qui offrent des solutions transversales homogènes, intégrées et évolutives. Cet ouvrage analyse le contexte et les enjeux de ce mouvement, illustre cette démarche à l'aide d'exemples concrets et analyse les facteurs-clé de réussite du choix, du déploiement et de l'utilisation opérationnelle d'un ERP. Cette sixième édition actualise les chiffres et les positions du marché. Elle met l'accent sur la conduite du changement.
- Published
- 2011
3. ERP et conduite des changements : Alignement, sélection et déploiement
- Author
-
Tomas, Jean-Louis, Gal, Yossi, Tomas, Jean-Louis, Tomas, Jean-Louis, Gal, Yossi, and Tomas, Jean-Louis
- Abstract
De plus en plus d'entreprises migrent leurs applications informatiques internes vers des grands "progiciels intégrés" (ERP) qui offrent des solutions transversales homogènes, intégrées et évolutives. Cet ouvrage analyse le contexte et les enjeux de ce mouvement, illustre cette démarche à l'aide d'exemples concrets et analyse les facteurs-clé de réussite du choix, du déploiement et de l'utilisation opérationnelle d'un ERP. Cette sixième édition actualise les chiffres et les positions du marché. Elle met l'accent sur la conduite du changement.
- Published
- 2011
4. ERP et conduite des changements : Alignement, sélection et déploiement
- Author
-
Tomas, Jean-Louis, Gal, Yossi, Tomas, Jean-Louis, Tomas, Jean-Louis, Gal, Yossi, and Tomas, Jean-Louis
- Abstract
De plus en plus d'entreprises migrent leurs applications informatiques internes vers des grands "progiciels intégrés" (ERP) qui offrent des solutions transversales homogènes, intégrées et évolutives. Cet ouvrage analyse le contexte et les enjeux de ce mouvement, illustre cette démarche à l'aide d'exemples concrets et analyse les facteurs-clé de réussite du choix, du déploiement et de l'utilisation opérationnelle d'un ERP. Cette sixième édition actualise les chiffres et les positions du marché. Elle met l'accent sur la conduite du changement.
- Published
- 2011
5. Plasticity in memristive devices for spiking neural networks
- Author
-
Saïghi, Sylvain, Mayr, Christian G., Serrano Gotarredona, María Teresa, Schmidt, Heidemarie, Lecerf, Gwendal, Tomas, Jean, Grollier, Julie, Boyn, Sören, Vincent, Adrien F., Querlioz, Damien, La Barbera, Selina, Alibart, Fabien, Vuillaume, Dominique, Bichler, Olivier, Gamrat, Christian, Linares Barranco, Bernabé, Saïghi, Sylvain, Mayr, Christian G., Serrano Gotarredona, María Teresa, Schmidt, Heidemarie, Lecerf, Gwendal, Tomas, Jean, Grollier, Julie, Boyn, Sören, Vincent, Adrien F., Querlioz, Damien, La Barbera, Selina, Alibart, Fabien, Vuillaume, Dominique, Bichler, Olivier, Gamrat, Christian, and Linares Barranco, Bernabé
- Abstract
Memristive devices present a new device technology allowing for the realization of compact non-volatile memories. Some of them are already in the process of industrialization. Additionally, they exhibit complex multilevel and plastic behaviors, which make them good candidates for the implementation of artificial synapses in neuromorphic engineering. However, memristive effects rely on diverse physical mechanisms, and their plastic behaviors differ strongly from one technology to another. Here, we present measurements performed on different memristive devices and the opportunities that they provide. We show that they can be used to implement different learning rules whose properties emerge directly from device physics: real time or accelerated operation, deterministic or stochastic behavior, long term or short term plasticity. We then discuss how such devices might be integrated into a complete architecture. These results highlight that there is no unique way to exploit memristive devices in neuromorphic systems. Understanding and embracing device physics is the key for their optimal use
- Published
- 2015
6. Plasticity in memristive devices for spiking neural networks
- Author
-
Saïghi, Sylvain, Mayr, Christian G., Serrano Gotarredona, María Teresa, Schmidt, Heidemarie, Lecerf, Gwendal, Tomas, Jean, Grollier, Julie, Boyn, Sören, Vincent, Adrien F., Querlioz, Damien, La Barbera, Selina, Alibart, Fabien, Vuillaume, Dominique, Bichler, Olivier, Gamrat, Christian, Linares Barranco, Bernabé, Saïghi, Sylvain, Mayr, Christian G., Serrano Gotarredona, María Teresa, Schmidt, Heidemarie, Lecerf, Gwendal, Tomas, Jean, Grollier, Julie, Boyn, Sören, Vincent, Adrien F., Querlioz, Damien, La Barbera, Selina, Alibart, Fabien, Vuillaume, Dominique, Bichler, Olivier, Gamrat, Christian, and Linares Barranco, Bernabé
- Abstract
Memristive devices present a new device technology allowing for the realization of compact non-volatile memories. Some of them are already in the process of industrialization. Additionally, they exhibit complex multilevel and plastic behaviors, which make them good candidates for the implementation of artificial synapses in neuromorphic engineering. However, memristive effects rely on diverse physical mechanisms, and their plastic behaviors differ strongly from one technology to another. Here, we present measurements performed on different memristive devices and the opportunities that they provide. We show that they can be used to implement different learning rules whose properties emerge directly from device physics: real time or accelerated operation, deterministic or stochastic behavior, long term or short term plasticity. We then discuss how such devices might be integrated into a complete architecture. These results highlight that there is no unique way to exploit memristive devices in neuromorphic systems. Understanding and embracing device physics is the key for their optimal use
- Published
- 2015
7. Plasticity in memristive devices for spiking neural networks
- Author
-
Saïghi, Sylvain, Mayr, Christian G., Serrano Gotarredona, María Teresa, Schmidt, Heidemarie, Lecerf, Gwendal, Tomas, Jean, Grollier, Julie, Boyn, Sören, Vincent, Adrien F., Querlioz, Damien, La Barbera, Selina, Alibart, Fabien, Vuillaume, Dominique, Bichler, Olivier, Gamrat, Christian, Linares Barranco, Bernabé, Saïghi, Sylvain, Mayr, Christian G., Serrano Gotarredona, María Teresa, Schmidt, Heidemarie, Lecerf, Gwendal, Tomas, Jean, Grollier, Julie, Boyn, Sören, Vincent, Adrien F., Querlioz, Damien, La Barbera, Selina, Alibart, Fabien, Vuillaume, Dominique, Bichler, Olivier, Gamrat, Christian, and Linares Barranco, Bernabé
- Abstract
Memristive devices present a new device technology allowing for the realization of compact non-volatile memories. Some of them are already in the process of industrialization. Additionally, they exhibit complex multilevel and plastic behaviors, which make them good candidates for the implementation of artificial synapses in neuromorphic engineering. However, memristive effects rely on diverse physical mechanisms, and their plastic behaviors differ strongly from one technology to another. Here, we present measurements performed on different memristive devices and the opportunities that they provide. We show that they can be used to implement different learning rules whose properties emerge directly from device physics: real time or accelerated operation, deterministic or stochastic behavior, long term or short term plasticity. We then discuss how such devices might be integrated into a complete architecture. These results highlight that there is no unique way to exploit memristive devices in neuromorphic systems. Understanding and embracing device physics is the key for their optimal use
- Published
- 2015
8. Plasticity in memristive devices for spiking neural networks
- Author
-
Saïghi, Sylvain, Mayr, Christian G., Serrano Gotarredona, María Teresa, Schmidt, Heidemarie, Lecerf, Gwendal, Tomas, Jean, Grollier, Julie, Boyn, Sören, Vincent, Adrien F., Querlioz, Damien, La Barbera, Selina, Alibart, Fabien, Vuillaume, Dominique, Bichler, Olivier, Gamrat, Christian, Linares Barranco, Bernabé, Saïghi, Sylvain, Mayr, Christian G., Serrano Gotarredona, María Teresa, Schmidt, Heidemarie, Lecerf, Gwendal, Tomas, Jean, Grollier, Julie, Boyn, Sören, Vincent, Adrien F., Querlioz, Damien, La Barbera, Selina, Alibart, Fabien, Vuillaume, Dominique, Bichler, Olivier, Gamrat, Christian, and Linares Barranco, Bernabé
- Abstract
Memristive devices present a new device technology allowing for the realization of compact non-volatile memories. Some of them are already in the process of industrialization. Additionally, they exhibit complex multilevel and plastic behaviors, which make them good candidates for the implementation of artificial synapses in neuromorphic engineering. However, memristive effects rely on diverse physical mechanisms, and their plastic behaviors differ strongly from one technology to another. Here, we present measurements performed on different memristive devices and the opportunities that they provide. We show that they can be used to implement different learning rules whose properties emerge directly from device physics: real time or accelerated operation, deterministic or stochastic behavior, long term or short term plasticity. We then discuss how such devices might be integrated into a complete architecture. These results highlight that there is no unique way to exploit memristive devices in neuromorphic systems. Understanding and embracing device physics is the key for their optimal use
- Published
- 2015
9. Plasticity in memristive devices for spiking neural networks
- Author
-
Saïghi, Sylvain, Mayr, Christian G., Serrano Gotarredona, María Teresa, Schmidt, Heidemarie, Lecerf, Gwendal, Tomas, Jean, Grollier, Julie, Boyn, Sören, Vincent, Adrien F., Querlioz, Damien, La Barbera, Selina, Alibart, Fabien, Vuillaume, Dominique, Bichler, Olivier, Gamrat, Christian, Linares Barranco, Bernabé, Saïghi, Sylvain, Mayr, Christian G., Serrano Gotarredona, María Teresa, Schmidt, Heidemarie, Lecerf, Gwendal, Tomas, Jean, Grollier, Julie, Boyn, Sören, Vincent, Adrien F., Querlioz, Damien, La Barbera, Selina, Alibart, Fabien, Vuillaume, Dominique, Bichler, Olivier, Gamrat, Christian, and Linares Barranco, Bernabé
- Abstract
Memristive devices present a new device technology allowing for the realization of compact non-volatile memories. Some of them are already in the process of industrialization. Additionally, they exhibit complex multilevel and plastic behaviors, which make them good candidates for the implementation of artificial synapses in neuromorphic engineering. However, memristive effects rely on diverse physical mechanisms, and their plastic behaviors differ strongly from one technology to another. Here, we present measurements performed on different memristive devices and the opportunities that they provide. We show that they can be used to implement different learning rules whose properties emerge directly from device physics: real time or accelerated operation, deterministic or stochastic behavior, long term or short term plasticity. We then discuss how such devices might be integrated into a complete architecture. These results highlight that there is no unique way to exploit memristive devices in neuromorphic systems. Understanding and embracing device physics is the key for their optimal use
- Published
- 2015
10. Plasticity in memristive devices for spiking neural networks
- Author
-
European Commission, Saïghi, Sylvain, Mayr, Christian G., Serrano-Gotarredona, Teresa, Schmidt, Heidemarie, Lecerf, Gwendal, Tomas, Jean, Grollier, Julie, Boyn, Sören, Vincent, Adrien F., Querlioz, Damien, La Barbera, Selina, Alibart, Fabien, Vuillaume, Dominique, Bichler, Olivier, Gamrat, Christian, Linares-Barranco, Bernabé, European Commission, Saïghi, Sylvain, Mayr, Christian G., Serrano-Gotarredona, Teresa, Schmidt, Heidemarie, Lecerf, Gwendal, Tomas, Jean, Grollier, Julie, Boyn, Sören, Vincent, Adrien F., Querlioz, Damien, La Barbera, Selina, Alibart, Fabien, Vuillaume, Dominique, Bichler, Olivier, Gamrat, Christian, and Linares-Barranco, Bernabé
- Abstract
Memristive devices present a new device technology allowing for the realization of compact non-volatile memories. Some of them are already in the process of industrialization. Additionally, they exhibit complex multilevel and plastic behaviors, which make them good candidates for the implementation of artificial synapses in neuromorphic engineering. However, memristive effects rely on diverse physical mechanisms, and their plastic behaviors differ strongly from one technology to another. Here, we present measurements performed on different memristive devices and the opportunities that they provide. We show that they can be used to implement different learning rules whose properties emerge directly from device physics: real time or accelerated operation, deterministic or stochastic behavior, long term or short term plasticity. We then discuss how such devices might be integrated into a complete architecture. These results highlight that there is no unique way to exploit memristive devices in neuromorphic systems. Understanding and embracing device physics is the key for their optimal use
- Published
- 2015
11. Plasticity in memristive devices for spiking neural networks
- Author
-
Saïghi, Sylvain, Mayr, Christian G, Serrano-Gotarredona, Teresa, Schmidt, Heidemarie, Lecerf, Gwendal, Tomas, Jean, Grollier, Julie, Boyn, Sören, Vincent, Adrien F, Querlioz, Damien, La Barbera, Selina, Alibart, Fabien, Vuillaume, Dominique, Bichler, Olivier, Gamrat, Christian, Linares-Barranco, Bernabe, Saïghi, Sylvain, Mayr, Christian G, Serrano-Gotarredona, Teresa, Schmidt, Heidemarie, Lecerf, Gwendal, Tomas, Jean, Grollier, Julie, Boyn, Sören, Vincent, Adrien F, Querlioz, Damien, La Barbera, Selina, Alibart, Fabien, Vuillaume, Dominique, Bichler, Olivier, Gamrat, Christian, and Linares-Barranco, Bernabe
- Abstract
Memristive devices present a new device technology allowing for the realization of compact non-volatile memories. Some of them are already in the process of industrialization. Additionally, they exhibit complex multilevel and plastic behaviors, which make them good candidates for the implementation of artificial synapses in neuromorphic engineering. However, memristive effects rely on diverse physical mechanisms, and their plastic behaviors differ strongly from one technology to another. Here, we present measurements performed on different memristive devices and the opportunities that they provide. We show that they can be used to implement different learning rules whose properties emerge directly from device physics: real time or accelerated operation, deterministic or stochastic behavior, long term or short term plasticity. We then discuss how such devices might be integrated into a complete architecture. These results highlight that there is no unique way to exploit memristive devices in neuromorphic systems. Understanding and embracing device physics is the key for their optimal use.
- Published
- 2015
12. ERP et conduite des changements : Alignement, sélection et déploiement
- Author
-
Gal, Yossi, Gal, Yossi, Tomas, Jean-Louis, Gal, Yossi, Gal, Yossi, and Tomas, Jean-Louis
- Abstract
De plus en plus d'entreprises migrent leurs applications informatiques internes vers des grands "progiciels intégrés" (ERP) qui offrent des solutions transversales homogènes, intégrées et évolutives. Cet ouvrage analyse le contexte et les enjeux de ce mouvement, illustre cette démarche à l'aide d'exemples concrets et analyse les facteurs-clé de réussite du choix, du déploiement et de l'utilisation opérationnelle d'un ERP. Cette sixième édition actualise les chiffres et les positions du marché. Elle met l'accent sur la conduite du changement.
- Published
- 2011
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.