1. Biosynthesis and physico-chemical characterization of high performing peptide hydrogels@graphene oxide composites
- Author
-
Chronopoulou, L., Di Nitto, A., Papi, Massimiliano, Parolini, Ornella, Falconi, M., Teti, G., Muttini, A., Lattanzi, Wanda, Palmieri, Valentina, Ciasca, Gabriele, Del Giudice, A., Galantini, L., Zanoni, R., Palocci, C., Papi M. (ORCID:0000-0002-0029-1309), Parolini O. (ORCID:0000-0002-5211-6430), Lattanzi W. (ORCID:0000-0003-3092-4936), Palmieri V., Ciasca G. (ORCID:0000-0002-3694-8229), Chronopoulou, L., Di Nitto, A., Papi, Massimiliano, Parolini, Ornella, Falconi, M., Teti, G., Muttini, A., Lattanzi, Wanda, Palmieri, Valentina, Ciasca, Gabriele, Del Giudice, A., Galantini, L., Zanoni, R., Palocci, C., Papi M. (ORCID:0000-0002-0029-1309), Parolini O. (ORCID:0000-0002-5211-6430), Lattanzi W. (ORCID:0000-0003-3092-4936), Palmieri V., and Ciasca G. (ORCID:0000-0002-3694-8229)
- Abstract
Hydrogels based on short peptide molecules are interesting biomaterials with wide present and prospective use in biotechnologies. A well-known possible drawback of these materials can be their limited mechanical performance. In order to overcome this problem, we prepared Fmoc-Phe3self-assembling peptides by a biocatalytic approach, and we reinforced the hydrogel with graphene oxide nanosheets. The formulation here proposed confers to the hydrogel additional physicochemical properties without hampering peptide self-assembly. We investigated in depth the effect of nanocarbon morphology on hydrogel properties (i.e. morphology, viscoelastic properties, stiffness, resistance to an applied stress). In view of further developments towards possible clinical applications, we have preliminarily tested the biocompatibility of the composites. Our results showed that the innovative hydrogel composite formulation based on FmocPhe3 and GO is a biomaterial with improved mechanical properties that appears suitable for the development of biotechnological applications.
- Published
- 2021