16 results on '"Stability of solution"'
Search Results
2. Lineární maticové diferenciální rovnice se zpožděním
- Author
-
Baštinec, Jaromír, Růžičková, Miroslava, Dzhalladova, Irada, Piddubna, Ganna Konstantinivna, Baštinec, Jaromír, Růžičková, Miroslava, Dzhalladova, Irada, and Piddubna, Ganna Konstantinivna
- Abstract
V předložené práci se zabýváme hledáním řešení lineární diferenciální maticové rovnice se zpožděním x'(t)=A0x(t)+A1x(t-tau), kde A0, A1 jsou konstantní matice, tau>0 je konstantní zpoždění. Dále se zabýváme odvozením podmínek stability řešení systému a řiditelnosti daného systému. Pro řešení tohoto systému byla použita metoda "krok za krokem". Řešení bylo nalezeno jak v rekurentní formě tak i v obecném tvaru. Je provedena analýza stability a asymptotické stability řešení systému. Jsou zformulovány podmínky stability. Hlavní roli v analýze stability měla metoda Lyapunovových funkcionálů. Jsou zformulovány nutné a postačující podmínky řiditelnosti pro případ systémů se stejnými maticemi a je zkonstruována řídící funkce. Jsou odvozeny postačující podmínky pro řiditelnost v případě komutujících matic a v případě obecných matic a je sestrojena řídící funkce. Všechny výsledky jsou ilustrovány na netriviálních příkladech., This work is devoted to computing the solution, stability of the solution and controllability of respective system of linear matrix differential equation with delay x'(t)=A0x(t)+A1 x(t-tau), where A0, A1 are constant matrices and tau>0 is the constant delay. To solve this equation, the "step by step" method was used. The solution was found in recurrent form and in general form. Stability and the asymptotic stability of the solution of the equation was investigated. Conditions for stability were defined. The Lyapunov’s functional theory is basic for the investigation. Necessary and sufficient condition for controllability in same matrices case was defined and the control was built. Sufficient conditions for controllability in communicative matrices case and general case were defined and controls were built. All results were illustrated with non-trivial examples.
3. Lineární maticové diferenciální rovnice se zpožděním
- Author
-
Baštinec, Jaromír, Růžičková, Miroslava, Dzhalladova, Irada, Piddubna, Ganna Konstantinivna, Baštinec, Jaromír, Růžičková, Miroslava, Dzhalladova, Irada, and Piddubna, Ganna Konstantinivna
- Abstract
V předložené práci se zabýváme hledáním řešení lineární diferenciální maticové rovnice se zpožděním x'(t)=A0x(t)+A1x(t-tau), kde A0, A1 jsou konstantní matice, tau>0 je konstantní zpoždění. Dále se zabýváme odvozením podmínek stability řešení systému a řiditelnosti daného systému. Pro řešení tohoto systému byla použita metoda "krok za krokem". Řešení bylo nalezeno jak v rekurentní formě tak i v obecném tvaru. Je provedena analýza stability a asymptotické stability řešení systému. Jsou zformulovány podmínky stability. Hlavní roli v analýze stability měla metoda Lyapunovových funkcionálů. Jsou zformulovány nutné a postačující podmínky řiditelnosti pro případ systémů se stejnými maticemi a je zkonstruována řídící funkce. Jsou odvozeny postačující podmínky pro řiditelnost v případě komutujících matic a v případě obecných matic a je sestrojena řídící funkce. Všechny výsledky jsou ilustrovány na netriviálních příkladech., This work is devoted to computing the solution, stability of the solution and controllability of respective system of linear matrix differential equation with delay x'(t)=A0x(t)+A1 x(t-tau), where A0, A1 are constant matrices and tau>0 is the constant delay. To solve this equation, the "step by step" method was used. The solution was found in recurrent form and in general form. Stability and the asymptotic stability of the solution of the equation was investigated. Conditions for stability were defined. The Lyapunov’s functional theory is basic for the investigation. Necessary and sufficient condition for controllability in same matrices case was defined and the control was built. Sufficient conditions for controllability in communicative matrices case and general case were defined and controls were built. All results were illustrated with non-trivial examples.
4. Odhady řešení diferenciálních systémů se zpožděným argumentem neutrálního typu
- Author
-
Diblík, Josef, Růžičková, Miroslava, Dzhalladova,, Irada, Baštincová, Alena, Diblík, Josef, Růžičková, Miroslava, Dzhalladova,, Irada, and Baštincová, Alena
- Abstract
Tato disertační práce pojednává o řešení diferenciálních rovnic a systémů diferenciálních rovnic. Hlavní pozornost je věnována asymptotickým vlastnostem rovnic se zpožděním a systémů rovnic se zpožděním. V první kapitole jsou uvedeny fyzikální a technické příklady popsané pomocí diferenciálních rovnic se zpožděním a jejich systémů. Je uvedena klasifikace rovnic se zpožděním a jsou zformulovány základní pojmy stability s důrazem na druhou metodu Ljapunova. Ve druhé kapitole jsou studovány odhady řešení rovnic neutrálního typu. Třetí kapitola se zabývá systémy diferenciálních rovnic neutrálního typu. Jsou odvozeny asymptotické odhady pro řešení i pro derivace řešení. V závěru kapitoly jsou uvedeny příklady a srovnání výsledků s pracemi jiných autorů. Výpočty byly prováděny pomocí programu MATLAB. Poslední, čtvrtá kapitola, se zabývá asymptotickými vlastnostmi systémů se speciálním typem nelinearity, tzv. sektorové nelinearity. Jsou odvozeny vlastnosti řešení a derivace řešení. Základní metodou pro důkazy je v celé práci druhá Ljapunovova metoda a použití funkcionálů Ljapunova-Krasovského., This dissertation discusses the solutions to the differential equation and to systems of differential equations. The main attention is paid to study of asymptotical properties of equations with delay and systems of equations with delay. In the first chapter are given physical and technical examples described by differential equations with delay and their systems. The classification of equations with delay is given and basic notions of theory of stability are formulated (mainly with the emphasis on the Lyapunov second method). In the second chapter estimates of solutions of equations of neutral type are studied. The third chapter deals with systems of differential equations of neutral type. Asymptotic estimates for solutions and their derivatives are proved. At the end of the chapter examples and comparisons of our results and of other authors are given. The calculation were performed with the MATLAB software. Last, the fourth chapter deals with asymptotical properties of systems having a special type of nonlinearities, so called ``sector nonlinearities''. Properties and estimations of solutions and derivatives are derived. The basic tools used in the dissertation are the Lyapunov second method and functionals of Lyapunov-Krasovskii type.
5. Lineární maticové diferenciální rovnice se zpožděním
- Author
-
Baštinec, Jaromír, Růžičková, Miroslava, Dzhalladova, Irada, Piddubna, Ganna Konstantinivna, Baštinec, Jaromír, Růžičková, Miroslava, Dzhalladova, Irada, and Piddubna, Ganna Konstantinivna
- Abstract
V předložené práci se zabýváme hledáním řešení lineární diferenciální maticové rovnice se zpožděním x'(t)=A0x(t)+A1x(t-tau), kde A0, A1 jsou konstantní matice, tau>0 je konstantní zpoždění. Dále se zabýváme odvozením podmínek stability řešení systému a řiditelnosti daného systému. Pro řešení tohoto systému byla použita metoda "krok za krokem". Řešení bylo nalezeno jak v rekurentní formě tak i v obecném tvaru. Je provedena analýza stability a asymptotické stability řešení systému. Jsou zformulovány podmínky stability. Hlavní roli v analýze stability měla metoda Lyapunovových funkcionálů. Jsou zformulovány nutné a postačující podmínky řiditelnosti pro případ systémů se stejnými maticemi a je zkonstruována řídící funkce. Jsou odvozeny postačující podmínky pro řiditelnost v případě komutujících matic a v případě obecných matic a je sestrojena řídící funkce. Všechny výsledky jsou ilustrovány na netriviálních příkladech., This work is devoted to computing the solution, stability of the solution and controllability of respective system of linear matrix differential equation with delay x'(t)=A0x(t)+A1 x(t-tau), where A0, A1 are constant matrices and tau>0 is the constant delay. To solve this equation, the "step by step" method was used. The solution was found in recurrent form and in general form. Stability and the asymptotic stability of the solution of the equation was investigated. Conditions for stability were defined. The Lyapunov’s functional theory is basic for the investigation. Necessary and sufficient condition for controllability in same matrices case was defined and the control was built. Sufficient conditions for controllability in communicative matrices case and general case were defined and controls were built. All results were illustrated with non-trivial examples.
6. Odhady řešení diferenciálních systémů se zpožděným argumentem neutrálního typu
- Author
-
Diblík, Josef, Růžičková, Miroslava, Dzhalladova,, Irada, Baštincová, Alena, Diblík, Josef, Růžičková, Miroslava, Dzhalladova,, Irada, and Baštincová, Alena
- Abstract
Tato disertační práce pojednává o řešení diferenciálních rovnic a systémů diferenciálních rovnic. Hlavní pozornost je věnována asymptotickým vlastnostem rovnic se zpožděním a systémů rovnic se zpožděním. V první kapitole jsou uvedeny fyzikální a technické příklady popsané pomocí diferenciálních rovnic se zpožděním a jejich systémů. Je uvedena klasifikace rovnic se zpožděním a jsou zformulovány základní pojmy stability s důrazem na druhou metodu Ljapunova. Ve druhé kapitole jsou studovány odhady řešení rovnic neutrálního typu. Třetí kapitola se zabývá systémy diferenciálních rovnic neutrálního typu. Jsou odvozeny asymptotické odhady pro řešení i pro derivace řešení. V závěru kapitoly jsou uvedeny příklady a srovnání výsledků s pracemi jiných autorů. Výpočty byly prováděny pomocí programu MATLAB. Poslední, čtvrtá kapitola, se zabývá asymptotickými vlastnostmi systémů se speciálním typem nelinearity, tzv. sektorové nelinearity. Jsou odvozeny vlastnosti řešení a derivace řešení. Základní metodou pro důkazy je v celé práci druhá Ljapunovova metoda a použití funkcionálů Ljapunova-Krasovského., This dissertation discusses the solutions to the differential equation and to systems of differential equations. The main attention is paid to study of asymptotical properties of equations with delay and systems of equations with delay. In the first chapter are given physical and technical examples described by differential equations with delay and their systems. The classification of equations with delay is given and basic notions of theory of stability are formulated (mainly with the emphasis on the Lyapunov second method). In the second chapter estimates of solutions of equations of neutral type are studied. The third chapter deals with systems of differential equations of neutral type. Asymptotic estimates for solutions and their derivatives are proved. At the end of the chapter examples and comparisons of our results and of other authors are given. The calculation were performed with the MATLAB software. Last, the fourth chapter deals with asymptotical properties of systems having a special type of nonlinearities, so called ``sector nonlinearities''. Properties and estimations of solutions and derivatives are derived. The basic tools used in the dissertation are the Lyapunov second method and functionals of Lyapunov-Krasovskii type.
7. Odhady řešení diferenciálních systémů se zpožděným argumentem neutrálního typu
- Author
-
Diblík, Josef, Růžičková, Miroslava, Dzhalladova,, Irada, Diblík, Josef, Růžičková, Miroslava, and Dzhalladova,, Irada
- Abstract
Tato disertační práce pojednává o řešení diferenciálních rovnic a systémů diferenciálních rovnic. Hlavní pozornost je věnována asymptotickým vlastnostem rovnic se zpožděním a systémů rovnic se zpožděním. V první kapitole jsou uvedeny fyzikální a technické příklady popsané pomocí diferenciálních rovnic se zpožděním a jejich systémů. Je uvedena klasifikace rovnic se zpožděním a jsou zformulovány základní pojmy stability s důrazem na druhou metodu Ljapunova. Ve druhé kapitole jsou studovány odhady řešení rovnic neutrálního typu. Třetí kapitola se zabývá systémy diferenciálních rovnic neutrálního typu. Jsou odvozeny asymptotické odhady pro řešení i pro derivace řešení. V závěru kapitoly jsou uvedeny příklady a srovnání výsledků s pracemi jiných autorů. Výpočty byly prováděny pomocí programu MATLAB. Poslední, čtvrtá kapitola, se zabývá asymptotickými vlastnostmi systémů se speciálním typem nelinearity, tzv. sektorové nelinearity. Jsou odvozeny vlastnosti řešení a derivace řešení. Základní metodou pro důkazy je v celé práci druhá Ljapunovova metoda a použití funkcionálů Ljapunova-Krasovského., This dissertation discusses the solutions to the differential equation and to systems of differential equations. The main attention is paid to study of asymptotical properties of equations with delay and systems of equations with delay. In the first chapter are given physical and technical examples described by differential equations with delay and their systems. The classification of equations with delay is given and basic notions of theory of stability are formulated (mainly with the emphasis on the Lyapunov second method). In the second chapter estimates of solutions of equations of neutral type are studied. The third chapter deals with systems of differential equations of neutral type. Asymptotic estimates for solutions and their derivatives are proved. At the end of the chapter examples and comparisons of our results and of other authors are given. The calculation were performed with the MATLAB software. Last, the fourth chapter deals with asymptotical properties of systems having a special type of nonlinearities, so called ``sector nonlinearities''. Properties and estimations of solutions and derivatives are derived. The basic tools used in the dissertation are the Lyapunov second method and functionals of Lyapunov-Krasovskii type.
8. Lineární maticové diferenciální rovnice se zpožděním
- Author
-
Baštinec, Jaromír, Růžičková, Miroslava, Dzhalladova, Irada, Baštinec, Jaromír, Růžičková, Miroslava, and Dzhalladova, Irada
- Abstract
V předložené práci se zabýváme hledáním řešení lineární diferenciální maticové rovnice se zpožděním x'(t)=A0x(t)+A1x(t-tau), kde A0, A1 jsou konstantní matice, tau>0 je konstantní zpoždění. Dále se zabýváme odvozením podmínek stability řešení systému a řiditelnosti daného systému. Pro řešení tohoto systému byla použita metoda "krok za krokem". Řešení bylo nalezeno jak v rekurentní formě tak i v obecném tvaru. Je provedena analýza stability a asymptotické stability řešení systému. Jsou zformulovány podmínky stability. Hlavní roli v analýze stability měla metoda Lyapunovových funkcionálů. Jsou zformulovány nutné a postačující podmínky řiditelnosti pro případ systémů se stejnými maticemi a je zkonstruována řídící funkce. Jsou odvozeny postačující podmínky pro řiditelnost v případě komutujících matic a v případě obecných matic a je sestrojena řídící funkce. Všechny výsledky jsou ilustrovány na netriviálních příkladech., This work is devoted to computing the solution, stability of the solution and controllability of respective system of linear matrix differential equation with delay x'(t)=A0x(t)+A1 x(t-tau), where A0, A1 are constant matrices and tau>0 is the constant delay. To solve this equation, the "step by step" method was used. The solution was found in recurrent form and in general form. Stability and the asymptotic stability of the solution of the equation was investigated. Conditions for stability were defined. The Lyapunov’s functional theory is basic for the investigation. Necessary and sufficient condition for controllability in same matrices case was defined and the control was built. Sufficient conditions for controllability in communicative matrices case and general case were defined and controls were built. All results were illustrated with non-trivial examples.
9. Odhady řešení diferenciálních systémů se zpožděným argumentem neutrálního typu
- Author
-
Diblík, Josef, Růžičková, Miroslava, Dzhalladova,, Irada, Diblík, Josef, Růžičková, Miroslava, and Dzhalladova,, Irada
- Abstract
Tato disertační práce pojednává o řešení diferenciálních rovnic a systémů diferenciálních rovnic. Hlavní pozornost je věnována asymptotickým vlastnostem rovnic se zpožděním a systémů rovnic se zpožděním. V první kapitole jsou uvedeny fyzikální a technické příklady popsané pomocí diferenciálních rovnic se zpožděním a jejich systémů. Je uvedena klasifikace rovnic se zpožděním a jsou zformulovány základní pojmy stability s důrazem na druhou metodu Ljapunova. Ve druhé kapitole jsou studovány odhady řešení rovnic neutrálního typu. Třetí kapitola se zabývá systémy diferenciálních rovnic neutrálního typu. Jsou odvozeny asymptotické odhady pro řešení i pro derivace řešení. V závěru kapitoly jsou uvedeny příklady a srovnání výsledků s pracemi jiných autorů. Výpočty byly prováděny pomocí programu MATLAB. Poslední, čtvrtá kapitola, se zabývá asymptotickými vlastnostmi systémů se speciálním typem nelinearity, tzv. sektorové nelinearity. Jsou odvozeny vlastnosti řešení a derivace řešení. Základní metodou pro důkazy je v celé práci druhá Ljapunovova metoda a použití funkcionálů Ljapunova-Krasovského., This dissertation discusses the solutions to the differential equation and to systems of differential equations. The main attention is paid to study of asymptotical properties of equations with delay and systems of equations with delay. In the first chapter are given physical and technical examples described by differential equations with delay and their systems. The classification of equations with delay is given and basic notions of theory of stability are formulated (mainly with the emphasis on the Lyapunov second method). In the second chapter estimates of solutions of equations of neutral type are studied. The third chapter deals with systems of differential equations of neutral type. Asymptotic estimates for solutions and their derivatives are proved. At the end of the chapter examples and comparisons of our results and of other authors are given. The calculation were performed with the MATLAB software. Last, the fourth chapter deals with asymptotical properties of systems having a special type of nonlinearities, so called ``sector nonlinearities''. Properties and estimations of solutions and derivatives are derived. The basic tools used in the dissertation are the Lyapunov second method and functionals of Lyapunov-Krasovskii type.
10. Spojité a diskrétní modely populační biologie
- Author
-
Čermák, Jan, Tomášek, Petr, Čermák, Jan, and Tomášek, Petr
- Abstract
Tato práce se zabývá analýzou spojitého a diskrétního logistického modelu jednodruhové populace. U každého modelu je diskutována rovnováha, její stabilita a chování řešení modelu při různých počátečních podmínkách. V případě diskrétního modelu je zde podrobně diskutováno periodické chování řešení v závislosti na změně parametru charakterizujícího míru růstu zkoumané populace. V práci je také zmíněno chaotické chování řešení modelu. Grafické interpretace dílčích problémů jsou vytvořeny v softwaru MATLAB. Výpočty jsou kontrolovány softwarem Maple., This thesis analyzes the continuous and discrete logistic model of a single-species population. For both of these models, there are discussed problems of equilibria, their stability and behaviour of the solutions for different initial conditions. In the case of the discrete model, the periodic behaviour of solutions is discussed in detail with respect to change of a parameter characterizing growth of the investigated population. The chaotic behaviour of solutions is mentioned as well. The graphic interpretations of each of the problems are performed using the software MATLAB. The calculations are checked via the software Maple.
11. Spojité a diskrétní modely populační biologie
- Author
-
Čermák, Jan, Tomášek, Petr, Čermák, Jan, and Tomášek, Petr
- Abstract
Tato práce se zabývá analýzou spojitého a diskrétního logistického modelu jednodruhové populace. U každého modelu je diskutována rovnováha, její stabilita a chování řešení modelu při různých počátečních podmínkách. V případě diskrétního modelu je zde podrobně diskutováno periodické chování řešení v závislosti na změně parametru charakterizujícího míru růstu zkoumané populace. V práci je také zmíněno chaotické chování řešení modelu. Grafické interpretace dílčích problémů jsou vytvořeny v softwaru MATLAB. Výpočty jsou kontrolovány softwarem Maple., This thesis analyzes the continuous and discrete logistic model of a single-species population. For both of these models, there are discussed problems of equilibria, their stability and behaviour of the solutions for different initial conditions. In the case of the discrete model, the periodic behaviour of solutions is discussed in detail with respect to change of a parameter characterizing growth of the investigated population. The chaotic behaviour of solutions is mentioned as well. The graphic interpretations of each of the problems are performed using the software MATLAB. The calculations are checked via the software Maple.
12. Lineární maticové diferenciální rovnice se zpožděním
- Author
-
Baštinec, Jaromír, Růžičková, Miroslava, Dzhalladova, Irada, Baštinec, Jaromír, Růžičková, Miroslava, and Dzhalladova, Irada
- Abstract
V předložené práci se zabýváme hledáním řešení lineární diferenciální maticové rovnice se zpožděním x'(t)=A0x(t)+A1x(t-tau), kde A0, A1 jsou konstantní matice, tau>0 je konstantní zpoždění. Dále se zabýváme odvozením podmínek stability řešení systému a řiditelnosti daného systému. Pro řešení tohoto systému byla použita metoda "krok za krokem". Řešení bylo nalezeno jak v rekurentní formě tak i v obecném tvaru. Je provedena analýza stability a asymptotické stability řešení systému. Jsou zformulovány podmínky stability. Hlavní roli v analýze stability měla metoda Lyapunovových funkcionálů. Jsou zformulovány nutné a postačující podmínky řiditelnosti pro případ systémů se stejnými maticemi a je zkonstruována řídící funkce. Jsou odvozeny postačující podmínky pro řiditelnost v případě komutujících matic a v případě obecných matic a je sestrojena řídící funkce. Všechny výsledky jsou ilustrovány na netriviálních příkladech., This work is devoted to computing the solution, stability of the solution and controllability of respective system of linear matrix differential equation with delay x'(t)=A0x(t)+A1 x(t-tau), where A0, A1 are constant matrices and tau>0 is the constant delay. To solve this equation, the "step by step" method was used. The solution was found in recurrent form and in general form. Stability and the asymptotic stability of the solution of the equation was investigated. Conditions for stability were defined. The Lyapunov’s functional theory is basic for the investigation. Necessary and sufficient condition for controllability in same matrices case was defined and the control was built. Sufficient conditions for controllability in communicative matrices case and general case were defined and controls were built. All results were illustrated with non-trivial examples.
13. Spojité a diskrétní modely populační biologie
- Author
-
Čermák, Jan, Tomášek, Petr, Čermák, Jan, and Tomášek, Petr
- Abstract
Tato práce se zabývá analýzou spojitého a diskrétního logistického modelu jednodruhové populace. U každého modelu je diskutována rovnováha, její stabilita a chování řešení modelu při různých počátečních podmínkách. V případě diskrétního modelu je zde podrobně diskutováno periodické chování řešení v závislosti na změně parametru charakterizujícího míru růstu zkoumané populace. V práci je také zmíněno chaotické chování řešení modelu. Grafické interpretace dílčích problémů jsou vytvořeny v softwaru MATLAB. Výpočty jsou kontrolovány softwarem Maple., This thesis analyzes the continuous and discrete logistic model of a single-species population. For both of these models, there are discussed problems of equilibria, their stability and behaviour of the solutions for different initial conditions. In the case of the discrete model, the periodic behaviour of solutions is discussed in detail with respect to change of a parameter characterizing growth of the investigated population. The chaotic behaviour of solutions is mentioned as well. The graphic interpretations of each of the problems are performed using the software MATLAB. The calculations are checked via the software Maple.
14. Odhady řešení diferenciálních systémů se zpožděným argumentem neutrálního typu
- Author
-
Diblík, Josef, Růžičková, Miroslava, Dzhalladova,, Irada, Diblík, Josef, Růžičková, Miroslava, and Dzhalladova,, Irada
- Abstract
Tato disertační práce pojednává o řešení diferenciálních rovnic a systémů diferenciálních rovnic. Hlavní pozornost je věnována asymptotickým vlastnostem rovnic se zpožděním a systémů rovnic se zpožděním. V první kapitole jsou uvedeny fyzikální a technické příklady popsané pomocí diferenciálních rovnic se zpožděním a jejich systémů. Je uvedena klasifikace rovnic se zpožděním a jsou zformulovány základní pojmy stability s důrazem na druhou metodu Ljapunova. Ve druhé kapitole jsou studovány odhady řešení rovnic neutrálního typu. Třetí kapitola se zabývá systémy diferenciálních rovnic neutrálního typu. Jsou odvozeny asymptotické odhady pro řešení i pro derivace řešení. V závěru kapitoly jsou uvedeny příklady a srovnání výsledků s pracemi jiných autorů. Výpočty byly prováděny pomocí programu MATLAB. Poslední, čtvrtá kapitola, se zabývá asymptotickými vlastnostmi systémů se speciálním typem nelinearity, tzv. sektorové nelinearity. Jsou odvozeny vlastnosti řešení a derivace řešení. Základní metodou pro důkazy je v celé práci druhá Ljapunovova metoda a použití funkcionálů Ljapunova-Krasovského., This dissertation discusses the solutions to the differential equation and to systems of differential equations. The main attention is paid to study of asymptotical properties of equations with delay and systems of equations with delay. In the first chapter are given physical and technical examples described by differential equations with delay and their systems. The classification of equations with delay is given and basic notions of theory of stability are formulated (mainly with the emphasis on the Lyapunov second method). In the second chapter estimates of solutions of equations of neutral type are studied. The third chapter deals with systems of differential equations of neutral type. Asymptotic estimates for solutions and their derivatives are proved. At the end of the chapter examples and comparisons of our results and of other authors are given. The calculation were performed with the MATLAB software. Last, the fourth chapter deals with asymptotical properties of systems having a special type of nonlinearities, so called ``sector nonlinearities''. Properties and estimations of solutions and derivatives are derived. The basic tools used in the dissertation are the Lyapunov second method and functionals of Lyapunov-Krasovskii type.
15. Lineární maticové diferenciální rovnice se zpožděním
- Author
-
Baštinec, Jaromír, Růžičková, Miroslava, Dzhalladova, Irada, Baštinec, Jaromír, Růžičková, Miroslava, and Dzhalladova, Irada
- Abstract
V předložené práci se zabýváme hledáním řešení lineární diferenciální maticové rovnice se zpožděním x'(t)=A0x(t)+A1x(t-tau), kde A0, A1 jsou konstantní matice, tau>0 je konstantní zpoždění. Dále se zabýváme odvozením podmínek stability řešení systému a řiditelnosti daného systému. Pro řešení tohoto systému byla použita metoda "krok za krokem". Řešení bylo nalezeno jak v rekurentní formě tak i v obecném tvaru. Je provedena analýza stability a asymptotické stability řešení systému. Jsou zformulovány podmínky stability. Hlavní roli v analýze stability měla metoda Lyapunovových funkcionálů. Jsou zformulovány nutné a postačující podmínky řiditelnosti pro případ systémů se stejnými maticemi a je zkonstruována řídící funkce. Jsou odvozeny postačující podmínky pro řiditelnost v případě komutujících matic a v případě obecných matic a je sestrojena řídící funkce. Všechny výsledky jsou ilustrovány na netriviálních příkladech., This work is devoted to computing the solution, stability of the solution and controllability of respective system of linear matrix differential equation with delay x'(t)=A0x(t)+A1 x(t-tau), where A0, A1 are constant matrices and tau>0 is the constant delay. To solve this equation, the "step by step" method was used. The solution was found in recurrent form and in general form. Stability and the asymptotic stability of the solution of the equation was investigated. Conditions for stability were defined. The Lyapunov’s functional theory is basic for the investigation. Necessary and sufficient condition for controllability in same matrices case was defined and the control was built. Sufficient conditions for controllability in communicative matrices case and general case were defined and controls were built. All results were illustrated with non-trivial examples.
16. Spojité a diskrétní modely populační biologie
- Author
-
Čermák, Jan, Tomášek, Petr, Fedorková, Lucie, Čermák, Jan, Tomášek, Petr, and Fedorková, Lucie
- Abstract
Tato práce se zabývá analýzou spojitého a diskrétního logistického modelu jednodruhové populace. U každého modelu je diskutována rovnováha, její stabilita a chování řešení modelu při různých počátečních podmínkách. V případě diskrétního modelu je zde podrobně diskutováno periodické chování řešení v závislosti na změně parametru charakterizujícího míru růstu zkoumané populace. V práci je také zmíněno chaotické chování řešení modelu. Grafické interpretace dílčích problémů jsou vytvořeny v softwaru MATLAB. Výpočty jsou kontrolovány softwarem Maple., This thesis analyzes the continuous and discrete logistic model of a single-species population. For both of these models, there are discussed problems of equilibria, their stability and behaviour of the solutions for different initial conditions. In the case of the discrete model, the periodic behaviour of solutions is discussed in detail with respect to change of a parameter characterizing growth of the investigated population. The chaotic behaviour of solutions is mentioned as well. The graphic interpretations of each of the problems are performed using the software MATLAB. The calculations are checked via the software Maple.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.