open, In the field of semiconductors, the study of spin-dependent properties provides fundamental information needed for the realization of devices that merge spin, photonic and electronic functionalities. In these devices the information is encoded in the spin degree of freedom (DOF), exploiting the interaction between the angular momentum of the photon and the carrier spin via the spin-orbit coupling (SOC). I focused on the study of SOC in Si, Ge, Sn and their alloys using optical spectroscopy. These materials possess promising properties for spintronics applications such as long spin lifetime, diffusion length and decoherence time. Notably, the advanced manufacture also opens the way to bandgap and strain engineering as further DOF to tune spin-dependent phenomena, whereas the application of optical spectroscopy allows to overcome typical problems of electrical measurements, e.g., the quality of contacts, that hamper the estimation of carrier kinetics parameters Quantum well (QW) systems are valid platforms to merge all the aforementioned DOF and to also introduce a way to manipulate the spin via electric fields. Indeed, in QW systems that possess bulk or structure inversion asymmetry (BIA/SIA), the spin degeneracy is removed due to the Dresselhaus or Rashba fields. As effective magnetic fields, they can act on the spin of a carrier, ultimately changing its orientation. SIA can arise from an asymmetric doping of the device. In this case, the device also possesses an intrinsic electric field, which can be of practical use for applications. Indeed, an external field can be applied to tune the Rashba field, achieving spin manipulation. This opportunity has a strong impact in spintronics devices, such as the spin-FET, where the gate voltage selects the orientation of the spin and switch between on/off states I carried out photoluminescence (PL) investigations on a stack of 50 Ge/Si0.15Ge0.85 QWs grown within the intrinsic region of a p-i-n diode. The asymmetric doping intr, Nel campo dei semiconduttori, lo studio delle proprietà spin dipendenti forniscono informazioni fondamentali per la realizzazione di dispositivi che uniscano spin, fotonica ed elettronica. In questi dispositivi l’informazione è codificata nel grado di libertà (DOF) dello spin, sfruttando l’accoppiamento spin-orbita (SOC) tra il momento angolare del fotone e lo spin del portatore. Ho concentrato la mia ricerca sullo studio del SOC con spettroscopia ottica in Si, Ge, Sn e loro leghe. Questi materiali possiedono proprietà promettenti per applicazioni di spintronica, tra cui lunghi tempi di vita e lunghezze di diffusione dello spin. I processi di fabbricazione aprono la strada all’ingegnerizzazione del bandgap e dello strain come DOF addizionali per sintonizzare i fenomeni spin-dipendenti. La spettroscopia ottica permette di superare i problemi delle misure elettriche, come la qualità dei contatti, che impediscono una stima corretta dei parametri cinetici. I pozzi quantici (QW), sono valide piattaforme per unire i DOF sopracitati e permettere la manipolazione dello spin con campi elettrici. Nei sistemi a QW che mancano della simmetria di inversione di punto o di quella strutturale (BIA/SIA), la degenerazione di spin è rimossa dai campi Dresselhaus o Rashba. In quanto campi magnetici, possono agire agiscono sullo spin cambiandone l’orientazione. La SIA può sorgere da un drogaggio asimmetrico. In questo caso, il dispositivo possiede anche un campo elettrico che può essere sfruttato. Infatti, con un campo elettrico esterno si può modulare il campo Rashba, manipolando lo spin. Questa possibilità è significativa per la spintronica, si pensi allo spin-FET, dove la tensione di gate seleziona l’orientazione dello spin e quindi lo stato on/off. Ho eseguito misure di fotoluminescenza (PL) su campioni costituiti da uno stack di 50 QW di Ge/Si0.15Ge0.85 cresciuto nella zona intrinseca di un diodo p-i-n. Il drogaggio asimmetrico introduce la SIA, permettendo di manipolare elettricam, 1, open, Rossi, S