1. Ultrasmall superparamagnetic Fe3O4 nanoparticles: honey-based green and facile synthesis and in vitro viability assay
- Author
-
Rasouli,Elisa, Jeffrey Basirun,Wan, Rezayi,Majid, Shameli,Kamyar, Nourmohammadi,Esmail, Khandanlou,Roshanak, Izadiyan,Zahra, Khoshdel Sarkarizi,Hoda, Rasouli,Elisa, Jeffrey Basirun,Wan, Rezayi,Majid, Shameli,Kamyar, Nourmohammadi,Esmail, Khandanlou,Roshanak, Izadiyan,Zahra, and Khoshdel Sarkarizi,Hoda
- Abstract
Elisa Rasouli,1 Wan Jeffrey Basirun,2 Majid Rezayi,3,4 Kamyar Shameli,5 Esmail Nourmohammadi,6 Roshanak Khandanlou,7 Zahra Izadiyan,5 Hoda Khoshdel Sarkarizi8 1Nanotechnology & Catalysis Research Centre, Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur, Malaysia; 2Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; 3Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; 4Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; 5Malaysia-Japan International Institute of Technology, University Technology Malaysia, Kuala Lumpur, Malaysia; 6Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; 7School of Psychological and Clinical Sciences, Faculty of Engineering, Health, Science and the Environment, Charles Darwin University, Darwin, NT, Australia; 8Department of Anatomical Sciences and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran Introduction: In the present research, we report a quick and green synthesis of magnetite nanoparticles (Fe3O4-NPs) in aqueous solution using ferric and ferrous chloride, with different percentages of natural honey (0.5%, 1.0%, 3.0% and 5.0% w/v) as the precursors, stabilizer, reducing and capping agent, respectively. The effect of the stabilizer on the magnetic properties and size of Fe3O4-NPs was also studied. Methods: The nanoparticles were characterized by X-ray diffraction (XRD) analysis, field emission scanning electron microscopy, energy dispersive X-ray fluorescence, transmission electron microscopy (TEM), vibrating sample magnetometry (VSM) and Fourier transform infrared spectroscopy. Results: The XRD analysis indicated the presence of pure Fe3O4-NPs while the TEM images indicated that the Fe3O4-NPs are spherical with a diameter range between 3.21 and 2.22 nm. The VSM
- Published
- 2018