1. Computer-generated holography for areal additive manufacture
- Author
-
Christopher, Peter and Wilkinson, Timothy
- Subjects
Hologram ,Holography ,Computer-Generated Holgoraphy ,3D Printing ,Rapid Prototyping ,Additive Manufactue ,Holographic Additive Manufacture ,Single-Transfer Time-Multiplexed ,Sorted Pixel Selection ,Spatial Light Modulator ,Linear Time - Abstract
With a market of approximately $10B, additive manufacture (AM) is an exciting next-generation technology with the promise of significant environmental and societal impact. AM promises to help reduce emissions and waste during manufacture while improving sustainability. Widely used in applications from hip implants to jet engines, AM remains the domain of experts due to the material and thermal challenges encountered. AM in metals is dominated by Laser Powder Based Fusion (L-PBF). Powder is spread in layers 10s of microns thick and selectively melted by scanning a small laser spot heat source over the bed. Traditional AM systems have limited ability to manage or compensate for heat generated. The rapidly moving heat source spot results in high thermal cycling and is a major influence on residual stress and distortion. Mechanical limitations in the galvoscanner mean that over or under-heating is common and can lead to voids, boiling and spatter. The scale difference between the part size and the spot size means that predictive modelling is beyond the scope of even today's best computing clusters. These factors have led to frequent inability to ensure part quality without physical prototyping and destructive testing. This thesis sets out initial research into creating a radically new AM process that uses computer-generated holography (CGH) to produce complex light patterns in a single pulse. Projecting power to the whole layer at once will mean that the thermal properties of the powders before and after writing can be factored into the processed hologram and part design. It will also significantly reduce thermal gradients and melt-pool instability. The fields of additive manufacture and computer-generated holography are introduced in Chapter 1. Chapters 2 and 3 then provide more detail on CGH and AM modelling respectively. The first deliverable, a reusable software package capable of generating holograms, is presented in Chapter 4. Algorithms developed for the project are introduced in Chapter 4.3. The first project demonstrator, an AM machine capable of printing in resins using holographic projection is discussed in Section 6.2. This shows performance comparable to modern 3D printing machines and highlights the applicability of computer-generated holography to areal processes. Section 6.3 then discusses the ongoing development of a metal powder demonstrator. As this PhD forms the first stage of a larger project, only preliminary work on the powder demonstrator is discussed. Chapter 7 then draws conclusions and outlines the way forward for future research. The thesis appendices then discuss an in-depth discussion of algorithm performances in Appendices A and B. Appendices C and D then discuss digressions into the implementation. Appendices E and F present a laser induced damage threshold (LIDT) measurement system developed. Finally, Appendices G and H provide more detail on the software developed and Appendix I gives links to additional project resources.
- Published
- 2021
- Full Text
- View/download PDF